[1] 关晓斌, 李战明. 基于SIFT和HOG特征融合的视频车辆检测算法[J]. 计算机与数字工程, 2021, 49(6): 1113-1117.
GUAN X B, LI Z M. Vehicle detection algorithm based on video SIFT and HOG feature fusion[J]. Computer & Digital Engineering, 2021, 49(6): 1113-1117.
[2] 张凯, 李华文. 一种基于SVM和HOG特征的视频车辆识别算法[J]. 电子世界, 2019(7): 74-75.
ZHANG K, LI H W. A video vehicle recognition algorithm based on SVM and HOG features[J]. Electronics World, 2019 (7): 74-75.
[3] 魏相站, 邵丽萍, 周骅. 基于改进的Faster RCNN模型在车辆类型检测中的应用[J]. 智能计算机与应用, 2020, 10(7): 97-100.
WEI X Z, SHAO L P, ZHOU Y. Application of improved Faster RCNN model in vehicle type detection[J]. Intelligent Computer and Applications, 2020, 10(7): 97-100.
[4] 曹磊, 王强, 史润佳, 等. 基于改进RPN的Faster-RCNN网络SAR图像车辆目标检测方法[J]. 东南大学学报(自然科学版), 2021, 51(1): 87-91.
CAO L, WANG Q, SHI R J, et al. Method for vehicle target detection on SAR image based on improved RPN in Faster-RCNN [J]. Journal of Southeast University(Natural Science Edition), 2021, 51(1): 87-91.
[5] 赵宇航, 左辰煜, 朱俊杰, 等. 基于YOLO V3的无人机航拍车辆检测方法[J]. 电子世界, 2020(13): 110-111.
ZHAO Y H, ZUO C Y, ZHU J J, et al. Unmanned aerial vehicle detection method based on YOLO V3[J]. Electronic World, 2020 (13): 110-111.
[6] 宋世奇, 李旭, 祝雪芬, 等. 基于改进SSD的航拍城市道路车辆检测方法[J]. 传感器与微系统, 2021, 40(1): 114-117.
SONG S Q, LI X, ZHU X F, et al. Urban road vehicle detection method by aerial photography based on improved SSD[J]. Transducer and Microsystem Technologies, 2021, 40(1): 114-117.
[7] 范江霞, 张文豪, 张丽丽, 等. 改进YOLOv5的无人机影像车辆检测方法[J]. 遥感信息, 2023, 38(3): 114-121.
FAN J X, ZHANG W H, ZHANG L L, et al. Vehicle detection method of UAV imagery based on YOLOv5[J]. Remote Sensing Information, 2023, 38(3): 114-121.
[8] 赵倩, 杨一聪. 多重金字塔的轻量化遥感车辆小目标检测算法[J]. 电子测量技术, 2023, 46(13): 88-94.
ZHAO Q, YANG Y C. Small object detection algorithm for lightweight remote sensing vehicles with multiple pyramids[J]. Electronic Measurement Technology, 2023, 46(13): 88-94.
[9] 张利丰, 田莹. 改进YOLOv8的多尺度轻量型车辆目标检测算法[J]. 计算机工程与应用, 2024, 60(3): 129-137.
ZHANG L F, TIAN Y. Improved YOLOv8 multi-scale and lightweight vehicle object detection algorithm[J]. Computer Engineering and Applications, 2024, 60(3): 129-137.
[10] 孙庆. 基于Transformer和BiFPN的轻量化车辆检测算法研究[D]. 西安: 长安大学, 2023.
SUN Q. Research on a lightweight vehicle detection algorithm based on Transformer and BiFPN[D]. Xi’an: Chang’an University, 2023.
[11] 张河山, 范梦伟, 谭鑫, 等. 基于改进YOLOX的无人机航拍图像密集小目标车辆检测[J]. 吉林大学学报(工学版): 1-13[2023-12-28]. https://doi.org/10.13229/j.cnki.jdxbgxb.
20230779.
ZHANG H S, FAN M W, TAN X, et al. Vehicle detection of dense small targets in UAV aerial images based on improved YOLOX[J]. Journal of Jilin University (Engineering Science Edition): 1-13[2023-12-28]. https://doi.org/10.13229/j.cnki.jdxbgxb.20230779.
[12] DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]//2017 IEEE International Conference on Computer Vision (ICCV), 2017: 764-773.
[13] ZHU X Z, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, June 15-20, 2019. New York: IEEE Press, 2019: 9300-9308.
[14] WANG W H, DAI J F, CHEN Z, et al. InternImage: exploring large-scale vision foundation models with deformable convolutions[J]. arXiv:2211.05778, 2022.
[15] LAU K W, PO L M, UR REHMAN Y A. Large separable kernel attention: rethinking the large kernel attention design in CNN[J]. arXiv:2309.01439, 2023.
[16] XIAO J S, ?ZHAO T, ?YAO Y T, et al. Context augmentation and feature refinement network for tiny object detection[C]//Under Review As a Conference Paper at ICLR 2022, 2022.
[17] DAI X, CHEN Y, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 7373-7382.
[18] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[19] REDMON J, FARHADI A. YOL9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7272.
[20] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[21] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[22] 王鹏飞, 黄汉明, 王梦琪. 改进YOLOv5的复杂道路目标检测算法[J]. 计算机工程与应用, 2022 , 58(17): 81-92.
WANG P F, HUANG H M, WANG M Q. Complex road target detection algorithm based on improved YOLOv5[J]. Computer Engineering and Applications, 2022, 58(17): 81-92.
[23] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for realtime object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[24] 刘卫光, 刘东, 王璐. 可变形卷积网络研究综述[J]. 计算机科学与探索, 2023, 17(7): 1549-1564.
LIU W G, LIU D, WANG L. Survey of deformable convolutional networks[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1549-1564.
[25] 赵珊, 郑爱玲, 刘子路, 等. 通道分离双注意力机制的目标检测算法[J]. 计算机科学与探索, 2023, 17(5): 1112-1125.
ZHAO S, ZHENG A L, LIU Z L, et al. Object detection algorithm based on channel separation dual attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1112-1125.
[26] 赵振兵, 王帆帆, 刘良帅, 等. 基于注意力特征融合YOLOv5模型的无人机输电线路航拍图像金具检测方法[J]. 电测与仪表, 2023, 60(3): 145-152.
ZHAO Z B, WANG F F, LIU L S, et al. Transmission line image fitting detection method based on attention feature fusion YOLOv5 model[J]. Electrical Measurement & Instrumentation, 2023, 60(3): 145-152. |