[1] HAN S, LIU B, CABEZAS R, et al. MEgATrack: monochrome egocentric articulated hand-tracking for virtual reality[J]. ACM Transactions on Graphics (ToG), 2020, 39(4): 1-13.
[2] 鲁光男. 基于交互式视景的虚拟现实单目深度信息提取[J]. 计算机仿真, 2020, 37(12): 382-385.
LU G N. Virtual reality monocular depth information extraction based on interactive view[J]. Computer Simulation, 2020, 37(12): 382-385.
[3] MOON G, YU S I, WEN H, et al. Interhand2. 6m: a dataset and baseline for 3D interacting hand pose estimation from a single rgb image[C]//European Conference on Computer Vision. Cham: Springer, 2020: 548-564.
[4] 张方义. 基于双目视觉的智能车辆障碍物检测系统研究[D]. 青岛: 山东科技大学, 2019.
ZHANG F Y. Research on intelligent vehicle obstacle detection system based on binocular vision[D]. Qingdao: Shandong University of Science and Technology, 2019.
[5] 贾鑫. 基于深度学习的双目三维物体稀疏与稠密点云重建[D]. 天津: 天津理工大学, 2022.
JIA X. Binocular 3D object sparse and dense point cloud reconstruction based on deep learning[D]. Tianjin: Tianjin University of Technology, 2022.
[6] SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[C]//Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001), 2001.
[7] 尹晨阳, 职恒辉, 李慧斌. 基于深度学习的双目立体匹配方法综述[J]. 计算机工程, 2022, 48(10): 1-12.
YIN C Y, ZHI H H, LI H B. Survey of binocular stereo-matching methods based on deep learning[J]. Computer Engineering, 2022, 48(10): 1-12.
[8] ?BONTAR J, LECUN Y. Stereo matching by training a convolutional neural network to compare image patches[J]. arXiv:1510.05970, 2015.
[9] SONG X, ZHAO X, HU H, et al. Edgestereo: a context integrated residual pyramid network for stereo matching[C]//Asian Conference on Computer Vision. Cham: Springer, 2018: 20-35.
[10] CAO Y, XU J, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2020.
[11] CHANG J R, CHEN Y S. Pyramid stereo matching network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 5410-5418.
[12] GUO X, YANG K, YANG W, et al. Group-wise correlation stereo network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3273-3282.
[13] DUGGAL S, WANG S, MA W C, et al. DeepPruner: learning efficient stereo matching via differentiable patch match[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 4384-4393.
[14] ZHANG F, PRISACARIU V, YANG R, et al. GA-Net: guided aggregation net for end-to-end stereo matching[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 185-194.
[15] XU H, ZHANG J. AANet: adaptive aggregation network for efficient stereo matching[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1959-1968.
[16] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[17] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017.
[18] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[19] GU X, FAN Z, ZHU S, et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2495-2504.
[20] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503.
[21] DU H, LI Y, SUN Y, et al. SRH-Net: stacked recurrent hourglass network for stereo matching[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 8005-8012.
[22] SHAMSAFAR F, WOERZ S, RAHIM R, et al. Mobilestereonet: towards lightweight deep networks for stereo matching[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022: 2417-2426.
[23] XU G, CHENG J, GUO P, et al. Attention concatenation volume for accurate and efficient stereo matching[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 12981-12990. |