[1] 刘艺, 李蒙蒙, 郑奇斌, 等. 视频目标跟踪算法综述[J]. 计算机科学与探索, 2022, 16(7): 1504-1515.
LIU Y, LI M M, ZHENG Q B, el at. Survey on video object tracking algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515.
[2] 陈云芳, 吴懿, 张伟. 基于孪生网络结构的目标跟踪算法综述[J]. 计算机工程与应用, 2020, 56(6): 10-18.
CHEN Y F, WU Y, ZHANG W. Survey of target tracking algorithm based on siamese network structure[J]. Computer Engineering and Applications, 2020, 56(6): 10-18.
[3] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 850-865.
[4] ZHU B J, WANG J F, JIANG Z K, et al. AutoAssign: differentiable label assignment for dense object detection[J]. arXiv:2007. 03496, 2020.
[5] LI B, YAN J J, WU W, et al. High performance visual tracking with siamese region proposal network[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8971-8980.
[6] LI B, WU W, WANG Q, et al. SiamRPN++: evolution of siamese visual tracking with very deep networks[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, 2019: 4282-4291.
[7] ZHANG Z P, PENG H W. Deeper and wider siamese networks for real-time visual tracking[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, 2019: 4591-4600.
[8] TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision, 2019: 9626-9635.
[9] CHEN Z D, ZHONG B, LI G R, et al. Siamese box adaptive network for visual tracking[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, 2020.
[10] CAO, CHEN K, LOY C C, et al. Prime sample attention in object detection[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020: 11580-11588.
[11] XU Y D, WANG Z Y, LI Z X, et al. SiamFC++: towards robust and accurate visual tracking with target estimation guidelines[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12549-12556.
[12] LI X, WANG W H, WU L J, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]//Proceedings of the 34th Conference on Neural Information Processing Systems, 2020.
[13] 赵运基, 范存良, 张新良. 融合多特征和通道感知的目标跟踪算法[J]. 计算机科学与探索, 2022, 16(6): 1417-1428.
ZHAO Y J, FAN C L, ZHANG X L. Object tracking algorithm with fusion of multi-feature and channel awareness[J]. Journal of Frontiers of Computer Science & Technology, 2022, 16(6): 1417-1428.
[14] 韩明, 王景芹, 王敬涛, 等. 级联特征融合孪生网络目标跟踪算法研究[J]. 计算机工程与应用, 2022, 58(6): 208-218.
HAN M, WANG J Q, WANG J T, et al. Research on object tracking algorithm based on cascading feature fusion of siamese network[J]. Computer Engineering and Applications, 2022, 58(6): 208-218.
[15] BHAT G, JOHNANDER J, DANELLJAN M, et al. Unveiling the power of deep tracking[C]//Proceedings of the European Conference on Computer Vision, 2018.
[16] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.
[17] LAW H, DENG J. Cornernet: detecting objects as paired keypoints[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 5880-5891.
[18] DUAN K W, BAI S, XIE L X, et al. Centernet: keypoint triplers for object detection[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision, 2019: 9656-9665.
[19] CHOI J, CHUN D Y, KIM H, et al. Gaussian yolov3: an accurate and fast object detector using localization uncertainty for autonomous driving[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision, 2019: 502-511.
[20] WU Y, LIM J W, YANG M H. Online object tracking: a benchmark[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2013: 2411-2418.
[21] MüLLER M, BIBI A, GIANCOLA S, et al. TrackingNet: a large-scale dataset and benchmark for object tracking in the wild[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 310-327.
[22] HUANG L H, ZHAO X, HUANG K Q . Got-10k: a large high-diversity benchmark for generic object tracking in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5):1562-1577.
[23] FAN H, LIN L T, YANG F, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, 2019: 5374-5383.
[24] 张伟俊, 钟胜, 徐文辉, 等. 融合显著性与运动信息的相关滤波跟踪算法[J]. 自动化学报, 2021, 47(7): 1572-1588.
ZHANG W J, ZHONG S, XU W H, el at. Correlation filter based visual tracking integrating saliency and motion cues[J]. Acta Automatica Sinica, 2021, 47(7): 1572-1588.
[25] DANELLJAN M, BHAT G, KHAN F S, et al. ATOM: accurate tracking by overlap maximization[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, 2019: 4660-4669.
[26] FU Z H, LIU Q J, FU Z H, et al. STMTrack: template-free visual tracking with space-time memory networks[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, 2021: 13774-13783.
[27] ZHANG Z P, PENG H W, FU J L. Ocean: object-aware anchor-free tracking[C]//Proceedings of the 16th European Conference on Computer Vision, 2020:771-787.
[28] PENG J L, JIANG Z K, GU Y Y, et al. SiamRCR: reciprocal classification and regression for visual object tracking[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, 2021: 952-958.
[29] GUO D Y, WANG J, CUI Y, et al. SiamCAR: siamese fully convolutional classification and regression for visual tracking[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, 2020: 6269-6277.
[30] KE W, ZHANG T L, HUANG Z Y, et al. Multiple anchor learning for visual object detection[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, 2020: 10203-10212.
[31] HE Y H, ZHU C C, WANG J R, et al. Bounding box regression with uncertainty for accurate object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, 2019: 2888-2897.
[32] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, 2019: 658-666.
[33] BHAT G, DANELLJAN M, GOOL L, et al. Learning discriminative model prediction for tracking[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision, 2019: 6181-6190. |