
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (3): 186-195.DOI: 10.3778/j.issn.1002-8331.2309-0240
• Pattern Recognition and Artificial Intelligence • Previous Articles Next Articles
DENG Jian, ZHANG Chi, GAO Yun
Online:2025-02-01
Published:2025-01-24
邓健,张驰,高赟
DENG Jian, ZHANG Chi, GAO Yun. Feature-Aware Enhancement Network for Siamese Tracking[J]. Computer Engineering and Applications, 2025, 61(3): 186-195.
邓健, 张驰, 高赟. 基于特征感知增强的孪生跟踪[J]. 计算机工程与应用, 2025, 61(3): 186-195.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2309-0240
| [1] 梁义涛, 韩永波, 李磊. 深度长时目标跟踪算法综述[J]. 计算机工程与应用, 2023, 59(4): 1-17. LIANG Y T, HAN Y B, LI L. Survey on deep-learning-based long-term object tracking algorithms[J]. Computer Engineering and Applications, 2023, 59(4): 1-17. [2] THANGAVEL J, KOKUL T, RAMANAN A, et al. Transformers in single object tracking: an experimental survey[J]. arXiv:2302.11867, 2023. [3] MARVASTI-ZADEH S M, CHENG L, GHANEI YAKHDAN H, et al. Deep learning for visual tracking: a comprehensive survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 3943-3968. [4] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [5] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE International Conference on Computer Vision, 2021: 9992-10002. [6] BHAT G, DANELLJAN M, VAN GOOL L, et al. Learning discriminative model prediction for tracking[C]//Proceedings of the IEEE International Conference on Computer Vision, 2019: 6181-6190. [7] FU Zhihong, FU Zehua, LIU Q J, et al. SparseTT: visual tracking with sparse transformers[C]//Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, 2022: 905-912. [8] XIE F, WANG C, WANG G, et al. Correlation-aware deep tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2022: 8741-8750. [9] YE B, CHANG H, MA B, et al. Joint feature learning and?relation modeling for?tracking: a one-stream framework[J]. arXiv:2203.11991, 2022. [10] LI B, YAN J, WU W, et al. High performance visual tracking with siamese region proposal network[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2018: 8971-8980. [11] 贾天豪, 彭力, 戴菲菲. 引入残差学习与多尺度特征增强的目标检测器[J]. 计算机科学与探索, 2023, 17(5): 1102-1111. JIA T H, PENG L, DAI F F. Object detector with residual learning and multi-scale feature enhancement[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1102-1111. [12] 赵珊, 郑爱玲, 刘子路, 等. 通道分离双注意力机制的目标检测算法[J]. 计算机科学与探索, 2023, 17(5): 1112-1125. ZHAO S, ZHENG A L, LIU Z L, et al. Object detection algorithm based on channel separation dual attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1112-1125. [13] 崔振东, 李宗民, 杨树林, 等. 基于语义分割引导的三维目标检测[J]. 图学学报, 2022, 43(6): 1134-1142. CUI Z D, LI Z M, YANG S L, et al. 3D object detection based on semantic segmentation guidance[J]. Journal of Graphics, 2022, 43(6): 1134-1142. [14] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[J]. arXiv:1807.06521, 2018. [15] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. [16] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020: 11531-11539. [17] 洪培钦, 罗灵鲲, 刘冰, 等. 引入轻量注意力的孪生神经网络目标跟踪算法[J]. 计算机工程与应用, 2022, 58(12): 112-121. HONG P Q, LUO L K, LIU B, et al. Siamese neural network target tracking algorithm with lightweight attention[J]. Computer Engineering and Applications, 2022, 58(12): 112-121. [18] WU Y, LIM J, YANG M H. Object tracking benchmark [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848. [19] MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for uav tracking[C]//Proceedings of the European Conference on Computer Vision, 2016: 445-461. [20] FAN H, LIN L, YANG F, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019: 5369-5378. [21] KRISTAN M, LEONARDIS A, MATAS J, et al. The sixth visual object tracking VOT2018 challenge results[C]//Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018. [22] HUANG L, ZHAO X, HUANG K. GOT-10k: a large high-diversity benchmark for generic object tracking in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1562-1577. [23] WANG N, ZHOU W, WANG J, et al. Transformer meets tracker: exploiting temporal context for robust visual tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2021. [24] DANELLJAN M, BHAT G, KHAN F S, et al. Atom: accurate tracking by overlap maximization[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019: 4655-4664. [25] CHEN X, YAN B, ZHU J, et al. Transformer tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2021: 8122-8131. [26] YU Y, XIONG Y, HUANG W, et al. Deformable siamese attention networks for visual object tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020: 6727-6736. [27] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5999-6009. [28] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the European Conference on Computer Vision, 2014: 740-755. [29] MüLLER M, BIBI A, GIANCOLA S, et al. TrackingNet: a large-scale dataset and benchmark for object tracking in the wild[C]//Proceedings of the European Conference on Computer Vision, 2018: 310-327. [30] KINGMA D P, BA J L. ADAM: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations, 2015: 1-15. [31] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]//Proceedings of the European Conference on Computer Vision, 2016: 850-865. [32] CAO Z, FU C, YE J, et al. HiFT: hierarchical feature transformer for aerial tracking[C]//Proceedings of the IEEE International Conference on Computer Vision, 2021: 15437-15446. [33] CAO Z, HUANG Z, PAN L, et al. TCTrack: temporal contexts for aerial tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2022: 14778-14788. [34] CHEN Z, ZHONG B, LI G, et al. Siamese box adaptive network for visual tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020: 6667-6676. [35] GUO D, WANG J, CUI Y, et al. SiamCAR: siamese fully convolutional classification and regression for visual tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020: 6268-6276. [36] LI B, WU W, WANG Q, et al. SiamRPN++: evolution of siamese visual tracking with very deep networks[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019: 4277-4286. [37] GUO D, SHAO Y, CUI Y, et al. Graph attention tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2021: 9538-9547. [38] TANG F, LING Q. Ranking-based siamese visual tracking[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2022: 8731-8740. [39] ZHANG Z, PENG H, FU J, et al. Ocean: object-aware anchor-free tracking[J]. arXiv:2006.10721, 2020. |
| [1] | XIE Yonghua, ZHUO Annan. Crack Detection Method Based on Attention Decoder and Continuous Supervision [J]. Computer Engineering and Applications, 2025, 61(4): 122-129. |
| [2] | XIAO Lizhong, YIN Chenxu. Incorporating Pre-Trained Model and Attention Mechanism for Event Extraction [J]. Computer Engineering and Applications, 2025, 61(4): 130-140. |
| [3] | DUAN Keke, ZHENG Junrong, YAN Ze. Unsupervised Tracking Combining Moving Object Discovery and Contrastive Learning [J]. Computer Engineering and Applications, 2025, 61(4): 141-149. |
| [4] | LEI Jingsheng, ZHANG Zhihao, QIAN Xiaohong, WANG Weiran, YANG Shengying. Improved Lightweight Multi-Directional License Plate Detection Algorithm of YOLOX [J]. Computer Engineering and Applications, 2025, 61(4): 230-240. |
| [5] | YUAN Heng, YAN Tinghao, ZHANG Shengchong. Two-Stage Feature Transfer Image Dehazing Algorithm [J]. Computer Engineering and Applications, 2025, 61(4): 241-252. |
| [6] | ZHAO Lei, LI Dong. PMM-YOLO:Traffic Sign Detection Algorithm with Multi-Scale Feature Fusion [J]. Computer Engineering and Applications, 2025, 61(4): 262-271. |
| [7] | ZHANG Xiangsheng, CHENG Jiabao, GU Binjie. Object Detection of Depalletizing Box Based on Rotating Frame Location [J]. Computer Engineering and Applications, 2025, 61(4): 323-330. |
| [8] | JIANG Yuehan, CHEN Junjie, LI Hongjun. Review of Human Action Recognition Based on Skeletal Graph Neural Networks [J]. Computer Engineering and Applications, 2025, 61(3): 34-47. |
| [9] | ZHANG Ji, WANG Wenbin, YU Yang. Defect Detection of Photovoltaic Cells Based on RFCARep-YOLOv8n [J]. Computer Engineering and Applications, 2025, 61(3): 131-143. |
| [10] | XU Zhuang, QIAN Yurong, YAN Feng. GCW-YOLOv8n: Lightweight Safety Helmet Wearing Detection Algorithm [J]. Computer Engineering and Applications, 2025, 61(3): 144-154. |
| [11] | LIU Chen, CHEN Shi, CHEN Hongzhen. Multi-Object Tracking Algorithm Based on Feature Enhancement in Optical Remote Sensing Videos [J]. Computer Engineering and Applications, 2025, 61(3): 177-185. |
| [12] | YU Bengong, SHI Zhongyu. Deep Attention and Two-Stage Fusion of Image-Text Sentiment Contrastive Learning Method [J]. Computer Engineering and Applications, 2025, 61(3): 223-233. |
| [13] | LI Yaolong, CHEN Xiaolin, LIN Hao, WANG Yu, WANG Chunlin. DySnake-YOLO: Improved Detection of Surface Defects on YOLOv9c Circuit Board [J]. Computer Engineering and Applications, 2025, 61(3): 242-252. |
| [14] | NI Lizheng, CHEN Ying, LI Xiang, DENG Xiuhan, MA Teng. Remote Sensing Image Registration Integrating Attention and Multi-Scale Features [J]. Computer Engineering and Applications, 2025, 61(3): 275-285. |
| [15] | HAO Ziqiang, TANG Ying, TIAN Fang, ZHANG Yan, ZHAN Weida. Lightweight Multiscale Attention Scoliosis Screening Method [J]. Computer Engineering and Applications, 2025, 61(3): 286-294. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||