[1] 刘海斌, 张友兵, 周奎, 等. 改进YOLOv5-S的交通标志检测算法[J]. 计算机工程与应用, 2024, 60(5): 200-209.
LIU H B, ZHANG Y B, ZHOU K, et al. Traffic sign detection algorithm based on improved YOLOv5-S[J]. Computer Engineering and Applications, 2024, 60(5): 200-209.
[2] BARODI A, BAJIT A, ZEMMOURI A, et al. Improved deep learning performance for real-time traffic sign detection and recognition applicable to intelligent transportation systems[J]. International Journal of Advanced Computer Science and Applications, 2022, 13(5): 712-723.
[3] AGRAWAL S, CHAURASIYA K R. Ensemble of SVM for accurate traffic sign detection and recognition[C]//Proceedings of the 1st International Conference on Graphics and Signal Processing, 2017: 10-15.
[4] REN X Y, MIN Z. An overview of traffic sign detection and recognition algorithms[C]//Proceedings of the International Journal of Multimedia Information Retrieval, 2022: 193-210.
[5] YAZDAN R, VARSHOSAZ M . Improving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171: 18-35.
[6] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[7] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[8] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015: 1137-1149.
[9] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision, 2016: 21-37.
[10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[11] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525.
[12] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 779-788.
[13] REDMIN J, FARHADI A.YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 6517-6525.
[14] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J].arXiv:1804.02767, 2018.
[15] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[J].arXiv:2004.10934, 2020.
[16] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[17] WANG C Y, BOCHKOVSKIY A, LIAO H. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022:7464-7475.
[18] DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 764-773.
[19] ZHU L, WANG X J, KE Z H, et al. BiFormer: vision transformer with bi-level routing attention[C]//Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition, 2023: 10323-10333.
[20] YAN F, XU Y. Improved target detection algorithm based on YOLO[C]//Proceedings of the 2021 4th International Conference on Robotics, Control and Automation Engineering (RCAE), 2021: 21-25.
[21] LI J, WANG H, XU Y, et al. Road object detection of YOLO algorithm with attention mechanism[J]. Frontiers in Signal Processing, 2021, 5: 9-16.
[22] MA Y, ZHANG S. Feature selection module for CNN based object detector[J]. IEEE Access, 2021, 9: 69456-69466.
[23] JU M, LUO J, WANG Z, et al. Adaptive feature fusion with attention mechanism for multi?scale target detection[J]. Neural Computing and Applications, 2021, 33: 2769-2781.
[24] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//Proceedings of the International Conference on Learning Representations, 2016.
[25] ZHU X Z, HU H, LIN Z F, et al. Deformable ConvNets V2: more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
[26] 张红民, 庄旭, 郑敬添, 等. 优化YOLO网络的人体异常行为检测方法[J]. 计算机工程与应用, 2023, 59(7): 242-249.
ZHANG H M, ZHUANG X, ZHENG J T, et al. Optimize the detection method of human abnormal behavior of YOLO network[J]. Computer Engineering and Applications, 2023, 59(7): 242-249.
[27] 何儒汉, 熊捷繁, 熊明福.基于背景自适应学习的行人重识别算法研究[J].计算机工程与应用, 2023, 59(7): 126-133.
HE R H, XIONG J F, XIONG M F. Study of pedestrian re-identification algorithm based on background adaptive learning[J]. Computer Engineering and Applications, 2023,59(7): 126-133.
[28] 何坚, 郭泽龙, 刘乐园, 等. 基于滑动窗口和卷积神经网络的可穿戴人体活动识别技术[J]. 电子与信息学报, 2022, 44(1): 168-177.
HE J, GUO Z L, LIU Y Y, et al. The wearable human activity identification technology based on sliding windows and convolutional neural networks[J]. Journal of Electronics and Information, 2022, 44(1): 168-177.
[29] WANG, W H, DAI J F, CHEN Z, et al. InternImage: exploring large-scale vision foundation models with deformable convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 14408-14419. |