[1] DENG L, ZHANG X, SHANG Z. Weakly supervised cross-domain mixed dish detection with mean-teacher[J]. IEEE Access, 2020, 8: 36-46.
[2] YANG L, ZHUO W, QI L, et al. ST++: make self-training work better for semi-supervised semantic segmentation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 4258-4267.
[3] CHEN X, YUAN Y, ZENG G, et al. Semi-supervised semantic segmentation with cross pseudo supervision[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2613-2622.
[4] ZHOU Q, FENG Z, GU Q, et al. Uncertainty-aware consistency regularization for cross-domain semantic segmentation[J]. arXiv:2004.08878, 2021.
[5] HUNG W C, TSAI Y H, LIOU Y T, et al. Adversarial learning for semi-supervised semantic segmentation[J]. arXiv:1802. 07934, 2018.
[6] ZHANG H, HU W, WANG X. ParC-Net: position aware circular convolution with merits from convnets and transformer[C]//Proceedings of the European Conference on Computer Vision, 2022: 613-630.
[7] LIU H, LIU F, FAN X, et al. Polarized self-attention: towards high-quality pixel-wise mapping[J]. Neurocomputing, 2022, 506: 158-167.
[8] 李梦怡, 朱定局. 基于全卷积网络的图像语义分割方法综述[J]. 计算机系统应用, 2021, 30(9): 41-52.
LI M Y, ZHU D J. Review on image semantic segmentation based on fully convolutional network[J]. Computer Systems and Applications, 2021, 30(9): 41-52.
[9] 于瑞云, 林福郁, 高宁蔚, 等. 基于可变形卷积时空网络的乘车需求预测模型[J]. 软件学报, 2021, 32(12): 3839-3851.
YU R Y, LIN F Y, et al. Passenger demand forecast model based on deformable convolution spatial-temporal network[J]. Journal of Software, 2021, 32(12): 3839-3851.
[10] KHAN Z Y, NIU Z. CNN with depthwise separable convolutions and combined kernels for rating prediction[J]. Expert Systems with Applications, 2021, 170: 114528.
[11] TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation through attention[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 10347-10357.
[12] WANG Y, WANG H, SHEN Y, et al. Semi-supervised semantic segmentation using unreliable pseudo-labels[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 4238-4247.
[13] KE Z, QIU D, LI K, et al. Guided collaborative training for pixel-wise semi-supervised learning[C]//Proceedings of the European Conference on Computer Vision, 2020: 429-445.
[14] FENG Z Y, ZHOU Q Y, GU Q Q, et al. DMT: dynamic mutual training for semi-supervised learning[J]. Pattern Recognition, 2022, 130: 108777.
[15] LAHIRI A, AYUSH K, BISWAS P K, et al. Generative adversarial learning for reducing manual annotation in semantic segmentation on large scale miscroscopy images: automated vessel segmentation in retinal fundus image as test case[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017:794-800.
[16] NIE D, GAO Y, WANG L, et al. ASDNet: attention based semi-supervised deep networks for medical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2018: 370-378.
[17] HAN L, HUANG Y, DOU H, et al. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network[J]. Computer Methods and Programs in Biomedicine, 2020, 189: 105275.
[18] 梁文桐, 朱艳辉, 詹飞, 等. 基于伪标签置信选择的半监督医疗事件抽取[J]. 微电子学与计算机, 2022, 39(1): 71-79.
LIANG W T, ZHU Y H, ZHAN F, et al. Semi-supervised medical event extraction based on pseudo-label confidence selection[J].Microelectronics & Computer, 2022, 39(1): 71-79.
[19] 张焯林, 赵建伟, 曹飞龙.构建带空洞卷积的深度神经网络重建高分辨率图像[J]. 模式识别与人工智能, 2019, 32(3): 259-267.
ZHANG C L, ZHAO J W, CAO F L.Build a deep neural network with void convolution to reconstruct high-resolution images[J].Patiern Recogtion and Arificial Inteligence, 2019, 32(3): 259-267.
[20] KANAI S, FUJIWARA Y, YAMANAKA Y, et al. Sigsoftmax: reanalysis of the softmax bottleneck[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018: 284-294.
[21] FU J, LIU J, LI Y, et al. Contextual deconvolution network for semantic segmentation[J]. Pattern Recognition, 2020, 101: 107152.
[22] FAN J, CAO X, WANG Q, et al. Adversarial learning for mono-or multi-modal registration[J]. Medical Image Analysis, 2019, 58: 101545. |