Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (22): 230-239.DOI: 10.3778/j.issn.1002-8331.2307-0283
• Graphics and Image Processing • Previous Articles Next Articles
YUAN Heng, WANG Jiali, ZHANG Shengchong
Online:
2024-11-15
Published:
2024-11-14
袁姮,王嘉丽,张晟翀
YUAN Heng, WANG Jiali, ZHANG Shengchong. Multi-Branch Thinning Congested Pedestrian Detection Algorithm[J]. Computer Engineering and Applications, 2024, 60(22): 230-239.
袁姮, 王嘉丽, 张晟翀. 多分支细化的拥挤行人检测算法[J]. 计算机工程与应用, 2024, 60(22): 230-239.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2307-0283
[1] 罗艳, 张重阳, 田永鸿, 等. 深度学习行人检测方法综述[J]. 中国图象图形学报, 2022, 27(7): 2094-2111. LUO Y, ZHANG C Y, TIAN Y H, et al. An overview of deep learning based pedestrian detection algorithms[J]. Journal of Image and Graphics, 2022, 27(7): 2094-2111. [2] 石欣, 卢灏, 秦鹏杰, 等. 一种远距离行人小目标检测方法[J]. 仪器仪表学报, 2022, 43(5): 136-146. SHI X, LU H, QIN P J, et al. A long-distance pedestrian small target detection method[J]. Chinese Journal of Scientific Instrument, 2022, 43(5): 136-146. [3] 冯宇平, 管玉宇, 杨旭睿, 等. 融合注意力机制的实时行人检测算法[J]. 电子测量技术, 2021, 44(17): 123-130. FENG Y P, GUAN Y Y, YANG X R. et al. Real-time pedestrian detection algorithm fused with attention mechanism[J]. Electronic Measurement Technology, 2021, 44(17): 123-130. [4] 贾君霞, 史珂鑫. 改进型SSD道路行人目标检测算法[J]. 国外电子测量技术, 2022, 41(12): 26-32. JIA J X, SHI K X. Modified SSD road pedestrian target detection algorithm[J]. Foreign Electronic Measurement Technology, 2022, 41(12): 26-32. [5] 陈勇, 金曼莉, 刘焕淋, 等. 基于特征增强模块的小尺度行人检测[J]. 电子与信息学报, 2023, 45(4): 1445-1453. CHEN Y, JIN M L, LIU H L, et al. Small-scale pedestrian detection based on feature enhancement strategy[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1445-1453. [6] 张云佐, 李文博, 郭威, 等. 面向多元场景的轻量级行人检测[J]. 光学精密工程, 2022, 30(14): 1764-1774. ZHANG Y Z, LI W B, GUO W, et al. Lightweight pedestrian detection for multiple scenes[J]. Optics and Precision Engineering, 2022, 30(14): 1764-1774. [7] PAPAGEORGIOU C, POGGIO T. A trainable system for object detection[J]. International Journal of Computer Vision, 2000, 38: 15-33. [8] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 886-893. [9] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. [10] 郝帅, 高山, 马旭, 等. 基于跨尺度特征聚合与分层注意力映射的红外行人检测[J]. 光子学报, 2022, 51(6): 419-435. HAO S, GAO S, MA X, et al. Infrared pedestrian detection based on cross-scale feature aggregation and hierarchical attention mapping[J]. Acta Photonica Sinica, 2022, 51(6): 419-435. [11] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28, 2015: 91-99. [12] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37. [13] REDMON J, DIVVALA S, GIRSHICK R. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016: 779-788. [14] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271. [15] 周永福, 李文龙, 胡冉冉. 多尺度特征融合的双通道SSD行人头部检测算法[J]. 激光与光电子学进展, 2021, 58(24): 383-394. ZHOU Y F, LI W L, HU R R. Two-channel SSD pedestrian head detection algorithm based on multi-scale feature fusion[J]. Laser & Optoelectronics Progress, 2021, 58(24): 383-394. [16] 孙好, 董兴法, 王军, 等. 基于改进YOLOv4-tiny轻量化校内行人目标检测算法[J]. 计算机工程与应用, 2023, 59(15): 97-106. SUN H, DONG X F, WANG J, et al. Based on the improved YOLOv4-tiny lightweight pedestrian in school target detection algorithm[J]. Computer Engineering and Applications, 2023, 59(15): 97-106. [17] 李明益, 贺敬良, 陈勇, 等. 红外交通场景下遮挡行人目标检测算法研究[J]. 激光与红外, 2022, 52(9): 1417-1424. LI M Y, HE J L, CHEN Y, et al. Research on the detection algorithm of obscured pedestrian targets in infrared traffic scenes[J]. Laser & Infrared, 2022, 52(9): 1417-1424. [18] 郝帅, 何田, 马旭, 等. 动态特征优化机制下的跨尺度红外行人检测[J]. 光学精密工程, 2022, 30(19): 2390-2403. HAO S, HE T, MA X, et al. Cross-scale infrared pedestrian detection based on dynamic feature optimization mechanism[J]. Optics and Precision Engineering, 2022, 30(19): 2390-2403. [19] 张印辉, 张朋程, 何自芬, 等. 红外行人目标精细尺度嵌入轻量化实时检测[J]. 光子学报, 2022, 51(9): 266-276. ZHANG Y H, ZHANG P C, HE Z F, et al. Lightweight real-time detection model of infrared pedestrian embedded in fine-scale[J]. Acta Photonica Sinica, 2022, 51(9): 266-276. [20] 谢斌红, 袁帅, 龚大立. 基于 RDB-YOLOv4 的煤矿井下有遮挡行人检测[J]. 计算机工程与应用, 2022, 58(5): 200-207. XIE B H, YUAN S, GONG D L. Detection of blocked pedestrians based on RDB-YOLOv4 in coal mine[J]. Computer Engineering and Applications, 2022, 58(5): 200-207. [21] 陈贵震, 邹国锋, 刘月, 等. 基于多尺度混合注意力与度量融合的小样本行人重识别[J]. 控制与决策, 2024, 39(5): 1441-1449. CHEN G Z, ZOU G F, LIU Y, et al. Few-shot for person re-identification based on multi-scale mixed attention and metric fusion[J]. Control and Decision, 2024, 39(5): 1441-1449. [22] ZHANG S, YANG J, SCHIELE B. Occluded pedestrian detection through guided attention in CNNs[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6995-7003. [23] 樊嵘, 马小陆. 面向拥挤行人检测的改进DETR算法[J]. 计算机工程与应用, 2023, 59(19): 159-165. FAN R, MA X L. Improved DETR for crowded pedestrian detection[J]. Computer Engineering and Applications, 2023, 59(19): 159-165. [24] HONG M, LI S, YANG Y, et al. SSPNet: scale selection pyramid network for tiny person detection from UAV images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5. [25] MEYER G P. An alternative probabilistic interpretation of the huber loss[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 5261-5269. [26] 鲍文斌, 张冬泉. XSSD-P: 改进的SSD行人检测算法[J]. 计算机工程与应用, 2022, 58(23): 132-141. BAO W B, ZHANG D Q. XSSD-P: improved SSD pedestrian detection algorithm[J]. Computer Engineering and Applications, 2022, 58(23): 132-141. [27] 孙龙清, 王泊宁, 王嘉煜, 等. 基于G-RepVGG和鱼类运动行为的水质监测方法[J]. 农业机械学报, 2022, 53(S2): 210-218. SUN L Q, WANG B N, WANG J Y, et. al. Water quality monitoring based on fish movement behavior and G-RepVGG[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(S2): 210-218. [28] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589. [29] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708. [30] 梁继然, 陈壮, 董国军, 等. 基于Ghost卷积和通道注意力机制级联结构的车辆检测方法研究[J]. 天津大学学报 (自然科学与工程技术版), 2023, 56(2): 193-199. LIANG J R, CHEN Z, DONG G J, et al. Research on the vehicle detection method based on the cascade structure of ghost convolution and channel attention mechanism[J]. Journal of Tianjin University (Science and Technology), 2023, 56(2): 193-199. [31] 徐正军, 张强, 许亮. 一种基于改进YOLOv5s-Ghost网络的交通标志识别方法[J]. 光电子·激光, 2023, 34(1): 52-61. XU Z J, ZHANG Q, XU L. A traffic sign recognition method based on improved YOLOv5s-Ghost network[J]. Journal of Optoelectronics·Laser, 2023, 34(1): 52-61. [32] 程春阳, 吴小俊, 徐天阳. 基于GhostNet的端到端红外和可见光图像融合方法[J]. 模式识别与人工智能, 2021, 34(11): 1028-1037. CHENG C Y, WU X J, XU T Y. End to end infrared and visible image fusion method based on GhostNet[J]. Pattern Recognition and Artificial Intelligence, 2021, 34(11): 1028-1037. [33] 李现国, 曹明腾, 李滨, 等. GPNet: 轻量型红外图像目标检测算法[J]. 红外与毫米波学报, 2022, 41(6): 1092-1101. LI X G, CAO M T, LI B, et al. GPNet: lightweight infrared image target detection algorithm[J]. Journal of Infrared and Millimeter Waves, 2022, 41(6): 1092-1101. [34] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. [35] 郑少佳. 基于傅里叶变换通道注意力网络的高光谱图像分类[D]. 上海: 华东师范大学, 2022. ZHENG S J. Hyperspectral image classification based on Fourier transform channel attention network[D]. Shanghai: East China Normal University, 2022. [36] 冯林娅, 姚力, 赵小杰. 引入Huber损失函数的睡眠脑电数据增强模型研究[J]. 北京师范大学学报 (自然科学版), 2021, 57(6): 875-882. FENG L Y, YAO L, ZHAO X J. Study on sleep EEG data enhancement model by introducing Huber loss function[J]. Journal of Beijing Normal University (Natural Science), 2021, 57(6): 875-882. [37] 俞搏天. p-Huber损失函数及其鲁棒性研究[D]. 杭州: 浙江师范大学, 2021. YU B T. p-Huber loss functions and its robustness[D]. Hangzhou: Zhejiang Normal University, 2021. [38] ZHANG S, XIE Y, WAN J, et al. Wider person: a diverse dataset for dense pedestrian detection in the wild[J]. IEEE Transactions on Multimedia, 2019, 22(2): 380-393. [39] 邹梓吟, 盖绍彦, 达飞鹏, 等. 基于注意力机制的遮挡行人检测算法[J]. 光学学报, 2021, 41(15): 157-165. ZOU Z Y, GAI S Y, DA F P, et al. Occluded pedestrian detection algorithm based on attention mechanism[J]. Acta Optica Sinica, 2021, 41(15): 157-165. [40] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 2980-2988. [41] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018. [42] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021. |
[1] | XIE Weiyu, ZHANG Qiang. Review on Detection of Drones and Birds in Photoelectric Images Based on Deep Learning Convolutional Neural Network [J]. Computer Engineering and Applications, 2024, 60(8): 46-55. |
[2] | TIAN Peng, MAO Li. Improved YOLOv8 Object Detection Algorithm for Traffic Sign Target [J]. Computer Engineering and Applications, 2024, 60(8): 202-212. |
[3] | ZHAO Xin, CHEN Lili, YANG Weichuan, ZHANG Chengwang. DY-YOLOv5:Target Detection for Aerial Image Based on Multiple Attention [J]. Computer Engineering and Applications, 2024, 60(7): 183-191. |
[4] | FU Jinyi, ZHANG Zijia, SUN Wei, ZOU Kaixin. Improved YOLOv8 Small Target Detection Algorithm in Aerial Images [J]. Computer Engineering and Applications, 2024, 60(6): 100-109. |
[5] | ZHOU Fei, GUO Dudu, WANG Yang, WANG Qingqing, QIN Yin, YANG Zhuomin, HE Haijun. Vehicle Detection Algorithm Based on Improved YOLOv8 in Traffic Surveillance [J]. Computer Engineering and Applications, 2024, 60(6): 110-120. |
[6] | YANG Yonggang, XIE Ruifu, GONG Zechuan. Improved YOLOv7-tiny UAV Target Detection Algorithm [J]. Computer Engineering and Applications, 2024, 60(6): 121-129. |
[7] | SU Chenyang, WU Wenhong, NIU Hengmao, SHI Bao, HAO Xu, WANG Jiamin, GAO Le, WANG Weitai. Review of Deep Learning Approaches for Recognizing Multiple Unsafe Behaviors in Workers [J]. Computer Engineering and Applications, 2024, 60(5): 30-46. |
[8] | FU Rao, FANG Jiandong, ZHAO Yudong. Moving Object Detection Algorithm with Unsupervised Missing Value Prediction [J]. Computer Engineering and Applications, 2024, 60(4): 220-228. |
[9] | XIN Shi’ao, GE Haibo, YUAN Hao, YANG Yudi , YAO Yang. Improved Lightweight Underwater Target Detection Algorithm of YOLOv7 [J]. Computer Engineering and Applications, 2024, 60(3): 88-99. |
[10] | XU Degang, WANG Zaiqing, XING Kuijie, GUO Yixin. Remote Sensing Image Target Detection Algorithm Based on Improved YOLOv6 [J]. Computer Engineering and Applications, 2024, 60(3): 119-128. |
[11] | LYU Meng, MAO Shenghui, CHAI Liang, GAO Pengfei, SHI Lei. Vehicle Detection Algorithm Based on Dual Branch Feature Aggregation Network [J]. Computer Engineering and Applications, 2024, 60(22): 240-250. |
[12] | ZHU He, BIAN Changzhi, ZHANG Jing, WANG Li, LI Xiaoxia, CHEN Yuling. Contrastive Feature Enhancement for Elevated Warehouse Small Target Detection Method [J]. Computer Engineering and Applications, 2024, 60(22): 347-354. |
[13] | XU Huizhi, GU Xunan. Research on Optimization of UAV Traffic Small Target Image Detection Algorithm [J]. Computer Engineering and Applications, 2024, 60(21): 194-204. |
[14] | ZHENG Aiyun, JIANG Xinyu, LIU Weimin, CHEN Shujun, ZHENG Zhi. Improved YOLOX Algorithm for Carbon Contact Strip Detection Method [J]. Computer Engineering and Applications, 2024, 60(21): 244-253. |
[15] | HU Jiale, ZHOU Min, SHEN Fei. Improved Detection Algorithm of RTDETR for UAV Small Target [J]. Computer Engineering and Applications, 2024, 60(20): 198-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||