[1] 张国平, 马楠, 贯怀光, 等. 深度学习方法在二维人体姿态估计的研究进展[J]. 计算机科学, 2022, 49(12): 219-228.
ZHANG G P, MA L, GUAN H G, et al. Research progress of deep learning methods in two-dimensional human pose estimation[J]. Computer Science, 2022, 49(12): 219-228.
[2] MEHTA D, SRIDHAR S, SOTNYCHENKO O, et al. VNECT: real-time 3D human pose estimation with a single RGB camera[J]. ACM Transactions on Graphics, 2017, 36(4): 1-14.
[3] RAFI U, DOERING A, LEIBE B, et al. Self-supervised keypoint correspondences for multi-person pose estimation and tracking in videos[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 36-52.
[4] RHODIN H, SP?RRI J, KATIRCIOGLU I, et al. Learning monocular 3D human pose estimation from multi-view images[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8437-8446.
[5] DAS S, SHARMA S, DAI R, et al. VPN: learning video-pose embedding for activities of daily living[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 72-90.
[6] TOSHEV A, SZEGEDY C. DeepPose: human pose estimation via deep neural networks[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1653-1660.
[7] NEWELL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 483-499.
[8] CHEN Y, WANG Z, PENG Y, et al. Cascaded pyramid network for multi-person pose estimation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7103-7112.
[9] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[10] CAO Z, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7291-7299.
[11] ZHANG Z, TANG J, WU G. Simple and lightweight human pose estimation[J]. arXiv:1911.10346, 2019.
[12] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5693-5703.
[13] CHENG B, XIAO B, WANG J, et al. HigherHRNet: scale-aware representation learning for bottom-up human pose estimation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5386-5395.
[14] YU C, XIAO B, GAO C, et al. Lite-HRNet: a lightweight high-resolution network[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10440-10450.
[15] LI Q, ZHANG Z, XIAO F, et al. Dite-HRNet: dynamic lightweight high-resolution network for human pose estimation[J]. arXiv:2204.10762, 2022.
[16] CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 12021-12031.
[17] 邓辉, 徐杨. 融入注意力和密集连接的轻量型人体姿态估计[J]. 计算机工程与应用, 2022, 58(16): 265-273.
DENG H, XU Y. Lightweight human pose estimation based on attention and dense connection[J]. Computer Engineering and Applications, 2022, 58(16): 265-273.
[18] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[19] FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3146-3154.
[20] LIU Y, SHAO Z, TENG Y, et al. NAM: normalization-based attention module[J]. arXiv:2111.12419, 2021.
[21] YANG B, BENDER G, LE Q V, et al. CondConv: conditionally parameterized convolutions for efficient inference[C]//Advances in Neural Information Processing Systems 32, 2019.
[22] CHEN Y, DAI X, LIU M, et al. Dynamic convolution: attention over convolution kernels[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11030-11039.
[23] ZHANG Y, ZHANJ, WANG Q, et al. DyNet: dynamic convolution for accelerating convolutional neural networks[J]. arXiv:2004.10694, 2020.
[24] LI C, ZHOU A, YAO A. Omni-dimensional dynamic convolution[J]. arXiv:2209.07947, 2022.
[25] 李杰. 结合注意力和纹理特征增强的行人再识别[J]. 计算机科学与探索, 2022, 16(3): 661-668.
LI J. Attention and texture feature enhancement for person re-identification[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 661-668.
[26] 高坤, 李汪根, 束阳, 等. 融入密集连接的多尺度轻量级人体姿态估计[J]. 计算机工程与应用, 2022, 58(24): 196-204.
GAO K, LI W G, SU Y, et al. Multi-scale lightweight human pose estimation with dense connections[J]. Computer Engineering and Applications, 2022, 58(24): 196-204.
[27] 张富凯, 贺天成. 结合轻量Openpose和注意力引导图卷积的动作识别[J]. 计算机工程与应用, 2022, 58(18): 180-187.
ZHANG F K, HE T C. Action recognition combined with lightweight Openpose and attention-guided graph convolution[J]. Computer Engineering and Applications, 2022, 58(18): 180-187.
[28] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 3-19.
[29] FANG H S, XIE S, TAI Y W, et al. RMPE: regional multi-person pose estimation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 2334-2343.
[30] 钟宝荣, 吴夏灵. 基于高分辨率网络的轻量型人体姿态估计研究[J]. 计算机工程, 2023, 49(4): 226-232.
ZHONG B R, WU X L. Research on lightweight humanpose estimation based on high-resolution network[J]. Computer Engineering, 2023, 49(4): 226-232.
[31] 王仕宸, 黄凯, 陈志刚, 等. 深度学习的三维人体姿态估计综述[J]. 计算机科学与探索, 2023, 17(1): 74-87.
WANG S C, HUANG K, CHENG Z G, et al. Survey on 3D human pose estimation of deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 74-87.
[32] 何坚, 郭泽龙, 刘乐园, 等. 基于滑动窗口和卷积神经网络的可穿戴人体活动识别技术[J]. 电子与信息学报, 2022, 44(1): 168-177.
HE J, GUO Z L, LIU L Y, et al. Human activity recognition technology based on sliding window and convolutional neural network[J]. Journal of Electronics and Information Technology, 2022, 44(1): 168-177.
[33] XIAO B, WU H, WEI Y. Simple baselines for human pose estimation and tracking[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 466-481.
[34] HUANG J, ZHU Z, GUO F, et al. The devil is in the details: delving into unbiased data processing for human pose estimation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5700-5709.
[35] ZHANG F, ZHU X, DAI H, et al. Distribution-aware coordinate representation for human pose estimation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 7093-7102.
[36] TANG W, YU P, WU Y. Deeply learned compositional models for human pose estimation[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 190-206. |