[1] XIAO Y, YUAN Q, JIANG K, et al. From degrade to upgrade: learning a self-supervised degradation guided adaptive network for blind remote sensing image super-resolution[J]. Information Fusion, 2023, 96: 297-311.
[2] 徐英豪, 吕玉超, 刘斯凡, 等. 基于分流的高光谱遥感图像超分辨重建[J]. 计算机工程与应用, 2022, 58(18): 260-267.
XU Y H, LYU Y C, LIU S F, et al. Super resolution reconstruction of hyperspectral remote sensing image based on shunt[J]. Computer Engineering and Applications, 2022, 58(18): 260-267.
[3] BAI C, ZHANG M, ZHANG J, et al. LSCIDMR: large-scale satellite cloud image database for meteorological research[J]. IEEE Transactions on Cybernetics, 2021, 52(11): 12538-12550.
[4] YANG W, ZHANG X, TIAN Y, et al. Deep learning for single image super-resolution: a brief review[J]. IEEE Transactions on Multimedia, 2019, 12(21): 3106-3121.
[5] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153-1160.
[6] 张金迪, 贾媛媛, 祝华正, 等. 融合注意力和空洞编码解码的3D-MRI超分辨率算法[J]. 计算机工程与应用, 2024, 60(13): 228-236.
ZHANG J D, JIA Y Y, ZHU H Z, et al. 3D-MRI super-resolution algorithm fusing attention and atrous encoder-decoder[J]. Computer Engineering and Applications, 2024, 60(13): 228-236.
[7] KIM K I, KWON Y. Single-image super-resolution using sparse regression and natural image prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(6): 1127-1133.
[8] LI B, ZHOU Y, ZHANG Y, et al. Depth image super-resolution based on joint sparse coding[J]. Pattern Recognition Letters, 2020, 130: 21-29.
[9] GLASNER D, BAGON S, IRANI M. Super-resolution from a single image[C]//Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, 2009: 349-356.
[10] TSAI R Y. Multiple frame image restoration and registration[J]. Advances in Computer Vision and Image Processing, 1989.
[11] OSKOUI-FARD P, STARK H. Tomographic image reconstruction using the theory of convex projections[J]. IEEE Transactions on Medical Imaging, 1988, 7(1): 45-58.
[12] ANWAR S, KHAN S, BARNES N. A deep journey into super-resolution: a survey[J]. ACM Computing Surveys, 2020, 53(3): 1-34.
[13] SONG Z, ZHAO X, JIANG H. Gradual deep residual network for super-resolution[J]. Multimedia Tools and Applications, 2021, 80: 9765-9778.
[14] 杨才东, 李承阳, 李忠博, 等. 深度学习的图像超分辨率重建技术综述[J]. 计算机科学与探索, 2022, 16(9): 1990-2010.
YANG C D, LI C Y, LI Z B, et al. Review of image super-resolution reconstruction algorithms based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010.
[15] CONG S, ZHOU Y. A review of convolutional neural network architectures and their optimizations[J]. Artificial Intelligence Review, 2023, 56(3): 1905-1969.
[16] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307.
[17] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[18] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 136-144.
[19] LIANG J, CAO J, SUN G, et al. SwinIR: image restoration using swin transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 1833-1844.
[20] 吕佳, 许鹏程. 多尺度自适应上采样的图像超分辨率重建算法[J]. 计算机科学与探索, 2023, 17(4): 879-891.
LYU J, XU P C. Image super-resolution reconstruction algorithm based on multi-scale adaptive upsampling[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 879-891.
[21] 王文安, 梁新刚, 刘侍刚. 基于门控卷积神经网络的图像超分辨重建算法[J]. 光电子·激光, 2022, 33(6): 637-642.
WANG W A, LIANG X G, LIU S G. Image super-resolution reconstruction algorithm based on gated convolutional neural network[J]. Optoelectronics·Laser, 2022, 33(6): 637-642.
[22] MENON S, DAMIAN A, HU S, et al. Pulse: self-supervised photo upsampling via latent space exploration of generative models[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2437-2445.
[23] TIAN C, ZHANG X, LIN J C W, et al. Generative adversarial networks for image super-resolution: a survey[J]. arXiv:2204.
13620, 2022.
[24] VAHGAT A, KAUTZ J. NVAE: a deep hierarchical v-ariational autoencoder[C]//Advances in Neural Information Processing Systems 33, 2020: 19667-19679.
[25] APPATI J K, GYAMENAH P, OWUSU E, et al. Deep residual variational autoencoder for image super-resolution[C]//Proceedings of the 2023 International Conference on Information, Communication and Computing Technology. Cham: Springer, 2023: 91-103.
[26] LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4681-4690.
[27] ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 586-595.
[28] WANG X T, YU K, WU S X, et al. ESRGAN: enhanced super-resolution generative adversarial networks[C]//LNCS 11133: Proceedings of the 15th European Conference on Computer Vision Workshops, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 63-79.
[29] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Advances in Neural Information Processing Systems 33, 2020: 6840-6851.
[30] SAHARIA C, HO J, CHAN W, et al. Image super-resolution via iterative refinement[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(4): 4713-4726.
[31] HO J, SAHARIR C, CHAN W, et al. Cascaded diffusion models for high fidelity image generation[J]. The Journal of Machine Learning Research, 2022, 23(1): 2249-2281.
[32] SHI W, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016: 1874-1883.
[33] SONG J, MENG C, ERMON S. Denoising diffusion implicit models[J]. arXiv:2010.02502, 2020. |