[1] GHAHREMANNEZHAD H, SHI H, LIU C. Object detection in traffic videos: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(7): 6780-6799.
[2] WANG Y, YANG G, GUO J. Vehicle detection in surveillance videos based on YOLOv5 lightweight network[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2022, 70(6): e143644.
[3] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37.
[4] REDMOM J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[5] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 2961-2969.
[6] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, 2015: 1440-1448.
[7] 张利丰, 田莹. 改进 YOLOv8 的多尺度轻量型车辆目标检测算法[J]. 计算机工程与应用, 2024, 60(3): 129-137.
ZHANG L F, TIAN Y. ?Improved multi-scale lightweight vehicle target detection algorithm for YOLOv8[J]. Computer Engineering and Applications, 2024, 60(3): 129-137.
[8] 许晓阳, 高重阳. 改进 YOLOv7-tiny 的轻量级红外车辆目标检测算法[J]. 计算机工程与应用, 2024, 60(1): 74-83.
XU X Y, GAO C Y. Improved YOLOv7-tiny lightweight infrared vehicle target detection algorithm[J]. Computer Engineering and Applications, 2024, 60(1): 74-83.
[9] 颜豪男, 吕伏, 冯永安. 特征级自适应增强的无人机目标检测算法[J]. 计算机科学与探索, 2024, 18(6): 1566-1578.
YAN H N, LYU F, FENG Y A. Feature-level adaptive enhancement for UAV target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1566-1578.
[10] 宋建辉, 王思宇, 刘砚菊, 等. 基于改进 FFRCNN 网络的无人机地面小目标检测算法[J]. 电光与控制, 2022, 29(7): 69-73.
SONG J H, WANG S Y, LIU Y J, et al. ?Ground small target detection algorithm of UAV based on improved FFRCNN network[J]. Electronics Optics & Control, 2022, 29(7): 69-73.
[11] 李松江, 吴宁, 王鹏, 等. 基于改进 Cascade RCNN 的车辆目标检测方法[J]. 计算机工程与应用, 2021, 57(5): 123-130.
LI S J, WU N, WANG P, et al. ?Vehicle target detection method based on improved Cascade RCNN[J]. Computer Engineering and Applications, 2021, 57(5): 123-130.
[12] 谢光达, 李洋, 曲洪权, 等. 基于改进 Transformer 的小目标车辆精确检测算法[J]. 激光与光电子学进展, 2022, 59(18): 364-371.
XIE G D, LI Y, QU H Q, et al. ?Small target accurate vehicle detection algorithm based on improved transformer[J]. Laser & Optoelectronics Progress, 2022, 59(18): 364-371.
[13] SONG Y, HONG S, HU C, et al. MEB-YOLO: an efficient vehicle detection method in complex traffic road scenes[J]. Computers, Materials & Continua, 2023, 75(3): 5761-5784.
[14] WANG J, DONG Y, ZHAO S, et al. A high-precision vehicle detection and tracking method based on the attention mechanism[J]. Sensors, 2023, 23(2): 724.
[15] BIE M, LIU Y, LI G, et al. Real-time vehicle detection algorithm based on a lightweight you-only-look-once (YOLOv5n-L) approach[J]. Expert Systems with Applications, 2023, 213(C): 119108.
[16] ZHANG Y, SUN Y, WANG Z, et al. YOLOv7-RAR for urban vehicle detection[J]. Sensors, 2023, 23(4): 1801.
[17] MAURICIO J, DOMINGUES I, BERNARDINO J. Comparing vision transformers and convolutional neural networks for image classification: a literature review[J]. Applied Sciences, 2023, 13(9): 5521.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[19] GE Z, LIU S, WANG F, et al. YOLOx: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[20] WU H, XIAO B, CODELLA N, et al. CVT: introducing convolutions to vision transformers[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 22-31.
[21] WEN L, DU D, CAI Z, et al. UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking[J]. Computer Vision and Image Understanding, 2020, 193: 102907.
[22] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 2980-2988.
[23] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[24] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[25] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[26] ZHOU X, WANG D, KRAHENBUHL P. Objects as points[J]. arXiv:1904.07850, 2019.
[27] DU Y, JIANG X. A real-time small target vehicle detection algorithm with an improved YOLOv5m network model[J]. Computers, Materials & Continua, 2024, 78(1): 303-327.
[28] HUI Y, WANG J, LI B. STF-YOLO: a small target detection algorithm for UAV remote sensing images based on improved Swin Transformer and class weighted classification decoupling head[J]. Measurement, 2024, 224: 113936. |