[1] XU C, LI L, LI J, et al. Surface defects detection and identification of lithium battery pole piece based on multi-feature fusion and PSO-SVM[J]. IEEE Access, 2021, 9: 85232-85239.
[2] 黄广俊, 邓元龙. 融合改进LBP和SVM的偏光片外观缺陷检测与分类[J]. 计算机工程与应用, 2020, 56(22): 251-255.
HUANG G J, DENG Y L. Polarizer visual defect detection and classification based on improved LBP and SVM algorithm[J]. Computer Engineering and Applications, 2020, 56(22): 251-255.
[3] HE X, WU L, SONG F, et al. Research on fabric defect detection based on deep fusion DenseNet-SSD network[C]//Proceedings of the 2020 International Conference on Wireless Communication and Sensor Networks, 2020: 60-64.
[4] ZHANG D, ZHENG Z, LI M, et al. CSART: channel and spatial attention-guided residual learning for real-time object tracking[J]. Neurocomputing, 2021, 436: 260-272.
[5] HE J, WANG Y C, WANG Y T, et al. A lightweight road crack detection algorithm based on improved YOLOv7 model[J]. Signal, Image and Video Processing, 2024, 18: 847-860.
[6] ZHAO S, LI G, ZHOU M, et al. YOLO-CEA: a real-time industrial defect detection method based on contextual enhancement and attention[J]. Cluster Computing, 2023, 27: 2329-2344.
[7] YANG Q, MA S, GUO D, et al. A small object detection method for oil leakage defects in substations based on improved Faster-RCNN[J]. Sensors, 2023, 23(17): 7390.
[8] 张涛源, 谢新林, 谢刚, 等. 融合Transformer的带钢缺陷实时检测算法[J]. 计算机工程与应用, 2023, 59(16): 232-239.
ZHANG T Y, XIE X L, XIE G, et al. Real-time strip steel defect detection algorithm fused with Transformer[J]. Computer Engineering and Applications, 2023, 59(16): 232-239.
[9] ZHAO Y, CHEN B, LIU B, et al. GRP-YOLOv5: an improved bearing defect detection algorithm based on YOLOv5[J]. Sensors, 2023, 23(17): 7437.
[10] LI J, WEN Y, HE L. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 6153-6162.
[11] YANG L, ZHANG R Y, LI L, et al. Simam: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, 2021: 11863-11874.
[12] TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[13] LI Y, YAO T, PAN Y, et al. Contextual transformer networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(2): 1489-1500.
[14] LI X, WANG W, HU X, et al. Selective kernel networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 510-519.
[15] SRINIVAS A, LIN T Y, PARMAR N, et al. Bottleneck transformers for visual recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 16519-16529.
[16] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 658-666.
[17] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[18] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[19] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, October 11-14, 2016: 21-37.
[20] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[21] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv: 2209.02976, 2022.
[22] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[23] TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[24] LV W, XU S, ZHAO Y, et al. Detrs beat YOLOs on real-time object detection[J]. arXiv:2304.08069, 2023. |