[1] 李伟东, 黄振柱, 何精武, 等. 改进行为克隆与DDPG的无人驾驶决策模型[J]. 计算机工程与应用, 2024, 60(14): 86-95.
LI W D, HUANG Z Z, HE J W, et al. Improved behavioral cloning and DDPG’s driverless decision model[J]. Computer Engineering and Applications, 2024, 60(14): 86-95.
[2] WANG Z, ZHAN J, DUAN C, et al. A review of vehicle detection techniques for intelligent vehicles[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(8): 3811-3831.
[3] KARANGWA J, LIU J, ZENG Z. Vehicle detection for autonomous driving: a review of algorithms and datasets[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 11568-11594.
[4] YIN T, CHEN W, LIU B, et al. Light “you only look once”: an improved lightweight vehicle-detection model for intelligent vehicles under dark conditions[J]. Mathematics, 2024, 12(1): 124.
[5] NAGARAJAN J, MANSOURIAN P, SHAHID M A, et al. Machine learning based intrusion detection systems for connected autonomous vehicles: a survey[J]. Peer-to-Peer Networking and Applications, 2023, 1(16): 2153-2185.
[6] FAN D P, JI G P, CHENG M M, et al. Concealed object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6024-6042.
[7] LI W, ZHAO D, YUAN B, et al. PETDet: proposal enhancement for two-stage fine-grained object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-14.
[8] QI H, SHI P, LIU Z, et al. TSF: two-stage sequential fusion for 3D object detection[J]. IEEE Sensors Journal, 2022, 12(22): 12163-12172.
[9] KIM J, KIM H, KIM T, et al. MLPD: multi-label pedestrian detector in multispectral domain[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7846-7853.
[10] 汪菊, 孙玉, 吴宜良. 改进Mask R-CNN的车辆检测算法[J]. 福州大学学报(自然科学版), 2024, 52(4): 421-429.
WANG J, SUN Y, WU Y L. Improved algorithm of mask R-CNN for vehicle detection[J]. Journal of Fuzhou University (Natural Science Edition), 2024, 52(4): 421-429.
[11] MA J, WAN H, WANG J, et al. An improved one-stage pedestrian detection method based on multi-scale attention feature extraction[J]. Journal of Real-Time Image Processing, 2021, 18: 1965-1978.
[12] WEI W, CHENG L, XIA Y, et al. Occluded pedestrian detection based on depth vision significance in biomimetic binocular[J]. IEEE Sensors Journal, 2019, 19(23): 11469-11474.
[13] 陈婷, 朱熟康, 高涛, 等. 基于自适应融合的实时车辆检测[J]. 同济大学学报 (自然科学版), 2024, 52(4): 532-540.
CHEN T, ZHU S K, GAO T, et al. Real-time vehicle detection based on adaptive fusion[J]. Journal of Tongji University (Natural Science), 2024, 52(4): 532-540.
[14] WEN L H, JO K H. Three-attention mechanisms for one-stage 3-D object detection based on LiDAR and camera[J]. IEEE Transactions on Industrial Informatics, 2021, 17(10): 6655-6663.
[15] LI C, WANG Y, LIU X. An improved YOLOv7 lightweight detection algorithm for obscured pedestrians[J]. Sensors, 2023, 23(13): 5912.
[16] LI F, ZHANG H, LIU S, et al. DN-DETR: accelerate DETR training by introducing query denoising[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(4): 2239-2251.
[17] 刘晶, 刘俊伟. 应用归一化通道注意力机制的YOLOv7交通标志检测算法[J/OL]. 计算机工程与应用: 1-11(2024-06-27) [2024-07-05]. http://kns.cnki.net/kcms/detail/11.2127.
tp.20240626.1452.009.html.
LIU J, LIU J W. YOLOv7 traffic sign detection algorithm with normalized channel attention mechanism[J/OL]. Computer Engineering and Applications: 1-11(2024-06-27) [2024-07-05]. http://kns.cnki.net/kcms/detail/11.2127.tp.20240626.
1452.009.html.
[18] 刘丽, 张硕, 白宇昂, 等. 改进YOLOv8的轻量级军事飞机检测算法[J]. 计算机工程与应用, 2024, 60(18): 114-125.
LIU L, ZHANG S, BAI Y A, et al. Improved lightweight military aircraft detection algorithm of YOLOv8[J]. Computer Engineering and Applications, 2024, 60(18): 114-125.
[19] SHI Y, LI S, LIU Z, et al. MTP-YOLO: you only look once based maritime tiny person detector for emergency rescue[J]. Journal of Marine Science and Engineering, 2024, 12(4): 669.
[20] XU G, LIAO W, ZHANG X, et al. Haar wavelet downsampling: a simple but effective downsampling module for semantic segmentation[J]. Pattern Recognition, 2023, 143: 109819. |