[1] SONG C, HUANG B, KE L, et al. Remote sensing of alpine lake water environment changes on the Tibetan plateau and surroundings: a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92: 26-37.
[2] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[3] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
[4] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[5] LIN G, MILAN A, SHEN C, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5168-5177.
[6] ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 39(6): 1856-1867.
[7] HUANG H, LIN L, TONG R, et al. UNet 3+: a full-scale connected UNet for medical image segmentation[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 1055-1059.
[8] 周家厚, 普运伟, 陈如俊, 等. 改进的UNet3+网络高分辨率遥感影像道路提取[J]. 激光杂志, 2024, 45(2): 161-168.
ZHOU J H, PU Y W, CHEN R J, et al. Improved UNet3+ network for high-resolution remote sensing image road extraction[J]. Laser Journal, 2024, 45(2): 161-168.
[9] 梁燕, 易春霞, 王光宇. 基于编解码网络UNet3+的遥感影像建筑变化检测[J]. 计算机学报, 2023, 46(8): 1720-1733.
LIANG Y, YI C X, WANG G Y. Remote sensing image building change detection based on encoding and decoding network UNet3+[J]. Journal of Computer Science, 2023, 46(8): 1720-1733.
[10] ZOU P, WU J S. SwinE-UNet3+: swin transformer encoder network for medical image segmentation[J]. Progress in Artificial Intelligence, 2023, 12(1): 99-105.
[11] JIANG C, ZHANG H, WANG C, et al. Water surface mapping from sentinel-1 imagery based on attention-UNet3+: a case study of Poyang lake region[J]. Remote Sensing, 2022, 14(19): 4708.
[12] LU H, LIU W, YE Z, et al. SAPA: similarity-aware point affiliation for feature upsampling[J]. arXiv:2209.12866, 2022.
[13] LI X, WANG W, HU X, et al. Selective kernel networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 510-519.
[14] SAGAR A. DMSANet: dual multi scale attention network[C]//Proceedings of the International Conference on Image Analysis and Processing, 2022: 633-645.
[15] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision, 2018: 801-818.
[16] XIE E, WANG W, YU Z, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[C]//Advances in Neural Information Processing Systems, 2021, 34: 12077-12090.
[17] HUANG L, XIA W, ZHANG B, et al. MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images[J]. Computer Methods and Programs in Biomedicine, 2017, 143: 67-74.
[18] SRAVYA N, LAL S, NALINI J, et al. DPPNet: an efficient and robust deep learning network for land cover segmentation from high-resolution satellite images[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 7(1): 128-139.
[19] JIA J, SONG J, KONG Q, et al. Multi-attention-based semantic segmentation network for land cover remote sensing images[J]. Electronics, 2023, 12(6): 1347.
[20] SUN Y, BI F, GAO Y, et al. A multi-attention UNet for semantic segmentation in remote sensing images[J]. Symmetry, 2022, 14(5): 906.
[21] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5693-5703.
[22] FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3146-3154.
[23] ZHENG S, LU J, ZHAO H, et al. Rethinking semantic segmentation from a sequence- to- sequence perspective with transformers[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 6881-6890.
[24] LI X, ZHONG Z, WU J, et al. Expectation-maximization attention networks for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9167-9176.
[25] GUO Y, WANG F, XIANG Y, et al. DGFNet: dual gate fusion network for land cover classification in very high-resolution images[J]. Remote Sensing, 2021, 13(18): 3755.
[26] SUN L, ZOU H, WEI J, et al. Semantic segmentation of high-resolution remote sensing images based on sparse self-attention and feature alignment[J]. Remote Sensing, 2023, 15(6): 1598.
[27] 田雪伟, 汪佳丽, 陈明, 等. 改进SegFormer网络的遥感图像语义分割方法[J]. 计算机工程与应用, 2023, 59(8): 217-226.
TIAN X W, WANG J L, CHEN M, et al. Semantic segmentation of remote sensing images based on improved SegFormer network[J]. Computer Engineering and Applications, 2023, 59(8): 217-226.
[28] WANG J, CHEN K, XU R, et al. Carafe: content-aware reassembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 3007-3016.
[29] LU H, DAI Y, SHEN C, et al. Indices matter: learning to index for deep image matting[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 3266-3275.
[30] DAI Y, LU H, SHEN C. Learning affinity-aware upsampling for deep image matting[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 6841-6850.
[31] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[32] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision , 2018: 3-19.
[33] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[34] YANG L, ZHANG R Y, LI L, et al. Simam: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, 2021: 11863-11874. |