[1] CHAN A B, LIANG Z S J, VASCONCELOS N. Privacy preserving crowd monitoring: counting people without people models or tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2008: 1-7.
[2] CHEN K, GONG S, XIANG T, et al. Cumulative attribute space for age and crow density estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013: 2467-2474.
[3] CHO S Y, CHOW T W, LEUNG C T. A neural-based crowd estimation by hybrid global learning algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics (PartB), 1999, 29(4): 535-541.
[4] DAVIES A C, YIN J H, VELASTIN S A. Crowd monitoring using image processing[J]. IEEE Electronics & Communication Engineering Journal, 1995, 7(1): 37-47.
[5] ZHANG Y, ZHOU D, CHEN S, et al. Single-image crowd counting via multi-column convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016.
[6] LI Y H, ZHANG X F, CHEN D M. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 1091-1100.
[7] LIU W Z, SALZMANN M, FUA P. Context-aware crowd counting[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5094-5103.
[8] MA Z, WEI X, HONG X, et al. Bayesian loss for crowd count estimation with point supervision[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6142-6151.
[9] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[10] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.
1556, 2014.
[11] ZHAN G, GE W, YU Y. GraphFPN: graph feature pyramid network for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2763-2772.
[12] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of the Medical Image Computing and Computer Assisted Intervention, 2015: 234-241.
[13] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21-37.
[14] SULLIVAN A, LU X. ASPP: a new family of oncogenes and tumour suppressor genes[J]. British Journal of Cancer, 2007, 96(2): 196-200.
[15] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[16] MNIH V, HEESS N, GRAVES A. Recurrent models of visual attention[J]. arXiv:1406.6247, 2014.
[17] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[18] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
[19] SAM D B, SURYA S, BABU R V. Switching convolutional neural network for crowd counting[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4031-4039.
[20] CAO X, WANG Z, ZHAO Y, et al. Scale aggregation network for accurate and efficient crowd counting[C]//Proceedings of the European Conference on Computer Vision, 2018: 757-773.
[21] CHEN K, LOY C C, GONG S, et al. Feature mining for localised crowd counting[C]//Proceedings of the British Machine Vision Conference, 2012.
[22] XU M, GE Z, JIANG X, et al. Depth information guided crowd counting for complex crowd scenes[J]. Pattern Recognition Letters, 2019, 125: 563-569.
[23] ZOU Z, CHENG Y, QU X, et al. Attend to count: crowd counting with adaptive capacity multi-scale CNNs[J]. Neurocomputing, 2019: 75-83.
[24] KONG X, ZHAO M, ZHOU H, et al. Weakly supervised crowd-wise attention for robust crowd counting[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, 2020.
[25] 袁健, 王姗姗, 罗英伟. 基于图像视野划分的公共场所人群计数模型[J]. 计算机应用研究, 2021, 38(4): 1256-1260.
YUAN J, WANG S S, LUO Y W. Public place crowd counting model based on image field division[J]. Application Research of Computers, 2021, 38(4): 1256-1260. |