[1] JORDAN M I, MITCHELL T M. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.
[2] MAHESH B. Machine learning algorithms-a review[J]. International Journal of Science and Research, 2020, 9: 381-386.
[3] VOULODIMOS A, DOULAMIS N, DOULAMIS A, et al. Deep learning for computer vision: a brief review[J]. Computational Intelligence and Neuroscience, 2018, 2018: 1-13.
[4] HU H, GU J, ZHANG Z, et al. Relation networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3588-3597.
[5] CHEN S, WANG H, XU F, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806-4817.
[6] DOAN V S, HUYNH-THE T, KIM D S. Underwater acoustic target classification based on dense convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 1-5.
[7] YU C, WANG J, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European Conference on Computer Vision, 2018: 325-341.
[8] FAN M, LAI S, HUANG J, et al. Rethinking BiSeNet for real-time semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 9716-9725.
[9] WANG X, ZHANG R, KONG T, et al. SOLOv2: dynamic and fast instance segmentation[C]//Advances in Neural Information Processing Systems, 2020, 33: 17721-17732.
[10] BOLYA D, ZHOU C, XIAO F, et al. YOLACT: real-time instance segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9157-9166.
[11] ALBAWI S, MOHAMMED T A, AL-ZAWI S. Understanding of a convolutional neural network[C]//Proceedings of the 2017 International Conference on Engineering and Technology, 2017: 1-6.
[12] HOLLANDER D R J, HANJALIC A. Logo recognition in video stills by string matching[C]//Proceedings of the 2003 International Conference on Image Processing, 2003: 517.
[13] BAGDANOV A D, BALLAN L, BERTINI M, et al. Trademark matching and retrieval in sports video databases[C]//Proceedings of the International Workshop on Workshop on Multimedia Information Retrieval, 2007: 79-86.
[14] ZHOU H, YUAN Y, SHI C. Object tracking using SIFT features and mean shift[J]. Computer Vision and Image Understanding, 2009, 113(3): 345-352.
[15] KLEBAN J, XIE X, MA W Y. Spatial pyramid mining for logo detection in natural scenes[C]//Proceedings of the 2008 IEEE International Conference on Multimedia and Expo, 2008: 1077-1080.
[16] SHARMA N, MANDAL R, SHARMA R, et al. Signature and logo detection using deep CNN for document image retrieval[C]//Proceedings of the 2018 16th International Conference on Frontiers in Handwriting Recognition, 2018: 416-422.
[17] SAHEL S, ALSAHAFI M, ALGHAMDI M, et al. Logo detection using deep learning with pretrained CNN models[J]. Engineering, Technology & Applied Science Research, 2021, 11(1): 6724-6729.
[18] YOUSAF W, UMAR A, SHIRAZI S H, et al. Patch-CNN: deep learning for logo detection and brand recognition[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(3): 3849-3862.
[19] ALSHOWAISH H, AL-OHALI Y, AL-NAFJAN A. Trademark image similarity detection using convolutional neural network[J]. Applied Sciences, 2022, 12(3): 1752.
[20] SENGUPTA A, YE Y, WANG R, et al. Going deeper in spiking neural networks: VGG and residual architectures[J]. arXiv:1802.02627, 2018.
[21] TRAPPEY A J, TRAPPEY C V, LIN E. Intelligent trademark recognition and similarity analysis using a two-stage transfer learning approach[J]. Advanced Engineering Informatics, 2022, 52: 101567.
[22] WANG J, MIN W, HOU S, et al. LogoDet-3K: a large-scale image dataset for logo detection[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2022, 18(1): 1-19.
[23] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826.
[24] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2017: 4278-4284.
[25] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[26] NIU Z, ZHONG G, YU H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62.
[27] 夏鸿斌, 肖奕飞, 刘渊. 融合自注意力机制的长文本生成对抗网络模型[J]. 计算机科学与探索, 2022, 16(7): 1603-1610.
XIA H B, XIAO Y F, LIU Y. Long text generation adversarial network model with self-attention mechanism[J]. Journal of Frontiers of Computer Science & Technology, 2022, 16(7): 1603-1610.
[28] 程艳, 蔡壮, 吴刚, 等. 结合自注意力特征过滤分类器和双分支GAN的面部表情识别[J]. 模式识别与人工智能, 2022, 35(3): 243-253.
CHENG Y, CAI Z, WU G, et al. Facial expression recognition combining self-attention feature filtering classifier and two-branch GAN[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(3): 243-253.
[29] HAN K, XIAO A, WU E, et al. Transformer in transformer[C]//Advances in Neural Information Processing Systems, 2021, 34: 15908-15919.
[30] CHOWDHARY K, CHOWDHARY K. Natural language processing[J]. Fundamentals of Artificial Intelligence, 2020: 603-649.
[31] DAI Z, CAI B, LIN Y, et al. UP-DETR: unsupervised pre-training for object detection with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 1601-1610.
[32] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022. |