[1] SILVA A, BASSO M, MENDES P, et al. A map building and sharing framework for multiple UAV systems[C]//Proceedings of the 2022 International Conference on Unmanned Aircraft Systems (ICUAS), 2022: 1333-1342.
[2] DING J, ZHANG J, ZHAN Z, et al. A precision efficient method for collapsed building detection in post-earthquake UAV images based on the improved NMS algorithm and Faster R-CNN[J]. Remote Sensing, 2022, 14(3): 663.
[3] YANG C, HUANG Z, WANG N. QueryDet: cascaded sparse query for accelerating high-resolution small object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 13668-13677.
[4] LI W, CHEN Y, HU K, et al. Oriented reppoints for aerial object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 1829-1838.
[5] WEI J, LIU G, LIU S, et al. A novel algorithm for small object detection based on YOLOv4[J]. PeerJ Computer Science, 2023, 9: e1314.
[6] BENNETT K P, BREDENSTEINER E J. Duality and geometry in SVM classifiers[C]//Proceedings of the Seventeenth International Conference on Machine Learning, 2000: 57-64.
[7] TANG Y, HAN K, GUO J, et al. An image patch is a wave: phase-aware vision MLP[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 10935-10944.
[8] AZIZ L, SALAM M S B H, SHEIKH U U, et al. Exploring deep learning-based architecture, strategies, applications and current trends in generic object detection: a comprehensive review[J]. IEEE Access, 2020, 8: 170461-170495.
[9] ZHAI S, SHANG D, WANG S, et al. DF-SSD: an improved SSD object detection algorithm based on DenseNet and feature fusion[J]. IEEE Access, 2020, 8: 24344-24357.
[10] CAI Z, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5): 1483-1498.
[11] REN Y, ZHU C, XIAO S. Object detection based on fast/faster RCNN employing fully convolutional architectures[J]. Mathematical Problems in Engineering, 2018, 2018: 1-7.
[12] LIANG Y, HAN Y, JIANG F. Deep learning-based small object detection: a survey[C]//Proceedings of the 8th International Conference on Computing and Artificial Intelligence, 2022: 432-438.
[13] XU D, WU Y. Improved YOLO-V3 with DenseNet for multi-scale remote sensing target detection[J]. Sensors, 2020, 20(15): 4276.
[14] CAO C, WU J, ZENG X, et al. Research on airplane and ship detection of aerial remote sensing images based on convolutional neural network[J]. Sensors, 2020, 20(17): 4696.
[15] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[16] HUANG M, ZHANG Y, CHEN Y. Small target detection model in aerial images based on TCA-YOLOv5m[J]. IEEE Access, 2022, 11: 3352-3366.
[17] ZHANG X, FENG Y, ZHANG S, et al. Finding nonrigid tiny person with densely cropped and local attention object detector networks in low-altitude aerial images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4371-4385.
[18] LIU Z, GAO Y, DU Q, et al. YOLO-extract: improved YOLOv5 for aircraft object detection in remote sensing images[J]. IEEE Access, 2023, 11: 1742-1751.
[19] VANHERLE B, MOONEN S, VAN REETH F, et al. Analysis of training object detection models with synthetic data[J]. arXiv:2211.16066, 2022.
[20] ZHAO W, SYAFRUDIN M, FITRIYANI NL. CRAS-YOLO: a novel multi-category vessel detection and classification model based on YOLOv5s algorithm[J]. IEEE Access, 2023, 11: 11463-11478.
[21] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[22] ILIEV A, KYURKCHIEV N, MARKOV S. On the approximation of the step function by some sigmoid functions[J]. Mathematics and Computers in Simulation, 2017, 133: 223-234.
[23] LIANG D, GENG Q, WEI Z, et al. Anchor retouching via model interaction for robust object detection in aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-13.
[24] SHEN R, ZHEN T, LI Z. YOLOv5-based model integrating separable convolutions for detection of wheat head images[J]. IEEE Access, 2023, 11: 12059-12074.
[25] XU B, CHEN M, GUAN W, et al. Efficient teacher: semi-supervised object detection for YOLOv5[J]. arXiv:2302. 07577, 2023.
[26] TONG K, WU Y, ZHOU F. Recent advances in small object detection based on deep learning: a review[J]. Image and Vision Computing, 2020, 97: 103910.
[27] TIAN G, LIU J, ZHAO H, et al. Small object detection via dual inspection mechanism for UAV visual images[J]. Applied Intelligence, 2022, 52(4): 4244-4257.
[28] SUN W, DAI L, ZHANG X, et al. RSOD: real-time small object detection algorithm in UAV-based traffic monitoring[J]. Applied Intelligence, 2022,52(8): 8448-8463. |