[1] FERGUSON D, DARMS M, URMSON C, et al. Detection, prediction, and avoidance of dynamic obstacles in urban environments[C]//Proceedings of the 2008 IEEE Intelligent Vehicles Symposium, 2008: 1149-1154.
[2] QIAN Y, DOLAN J M, YANG M. DLT-Net: joint detection of drivable areas, lane lines, and traffic objects[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(11): 4670-4679.
[3] 金枝, 张倩, 李熙莹. 基于轻量化ConvLSTM的密集道路车辆检测算法[J]. 计算机工程与应用, 2023, 59(8): 89-96.
JIN Z, ZHANG Q, LI X Y. Dense road vehicle detection based on lightweight ConvLSTM[J]. Computer Engineering and Applications, 2023, 59(8): 89-96.
[4] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6230-6239.
[5] 杜黎, 吕毅斌, 武德安, 等. 复杂场景中的快速车道线检测方法[J]. 计算机工程与应用, 2023, 59(13): 178-185.
DU L, LYU Y B, WU D A, et al. Fast lane detection method in complex scenarios[J]. Computer Engineering and Applications, 2023, 59(13): 178-185.
[6] 王越, 曹家乐, 孙学斌, 等. 融合空间语义的自动驾驶视觉联合感知算法[J/OL]. 太原理工大学学报(2023-09-12)[2023-12-02]. http://kns.cnki.net/kcms/detail/14.1220.n.20230911.
1311.002.html.
WANG Y, CAO J L, SUN X B, et al. Spatial semantic fusion network for autonomous driving visual joint perception algorithm[J/OL]. Journal of Taiyuan University of Technology, (2023-09-12)[2023-12-02]. http://kns.cnki.net/kcms/detail/14.
1220.n.20230911.1311.002.html.
[7] TEICHMANN M, WEBER M, ZOELLNER M, et al. MultiNet: real-time joint semantic reasoning for autonomous driving[C]//Proceedings of the 2018 IEEE Intelligent Vehicles Symposium, 2018: 1013-1020.
[8] CHEN G, WU T, DUAN J, et al. CenterPNets: a multi-task shared network for traffic perception[J]. Sensors, 2023, 23(5): 2467.
[9] WU D, LIAO M W, ZHANG W T, et al. YOLOP: you only look once for panoptic driving perception[J]. Machine Intelligence Research, 2022, 19: 550-562.
[10] ZHANG X, LIU C, YANG D, et al. RFAConv: innovating spatial attention and standard convolutional operation[J]. arXiv:2304.03198, 2023.
[11] SOLAWETZ J, FRANCESCO. What is YOLOv8? the ultimate guide[EB/OL]. (2023-01-11)[2023-06-02]. https://blog.roboflow.com/whats-new-in-yolov8/.
[12] WANG J, CHEN K, XU R, et al. Carafe: content-aware reassembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 3007-3016.
[13] 麻斯亮, 许勇. 最小点距离的边界框回归损失函数及其应用[J/OL]. 小型微型计算机系统(2024-09-11)[2024-01-31]. http://kns.cnki.net/kcms/detail/21.1106.TP.20231103.1816.
008.html.
MA S L, XU Y. Bounding box regression loss function based on minimum point distance and its application[J/OL]. Journal of Chinese Mini-Micro Computer Systems(2024-09-11)[2024-01-31]. https://kns.cnki.net/kcms/deail/21.1106.TP.20231103.1816.008.html.
[14] YU F, XIAN W, CHEN Y, et al. BDD100K: a diverse driving dataset for heterogeneous multitask learning[J]. arXiv:1805.04687, 2018.
[15] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1571-1580.
[16] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(9): 1904-1916.
[17] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[18] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[19] 李文举, 于杰, 沙利业, 等. 基于全维动态卷积的交通标志识别[J]. 计算机工程与应用, 2024, 60(18): 316-323.
LI W X, YU J, SHA L Y, et al. Traffic sign recognition based on omni-dimensional dynamic convolution[J]. Computer Engineering and Applications, 2024, 60(18): 316-323.
[20] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[21] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[22] CHOLLET F. Xception: deep learning with depth wise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1800-1807.
[23] LIU R, LEHMAN J, MOLINO P, et al. An intriguing failing of convolutional neural networks and the CoordConv solution[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018: 9628-9639.
[24] TAN H, DONG S. Pixel-level concrete crack segmentation using pyramidal residual network with omni-dimensional dynamic convolution[J]. Processes, 2023, 11(2): 546.
[25] 牛国臣, 王晓楠. 基于交叉注意力的多任务交通场景检测模型[J]. 北京航空航天大学学报, 2024, 50(5): 1491-1499.
NIU G C, WANG X N. A multi-task traffic scene detection model based on cross-attention[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(5): 1491-1499.
[26] DONG C. Image semantic segmentation using improved ENet network[J]. Journal of Information Processing Systems, 2021, 17: 892-904.
[27] PAN X, SHI J, LUO P, et al. Spatial as deep: spatial CNN for traffic scene understanding[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018.
[28] HOU Y, MA Z, LIU C, et al. Learning lightweight lane detection CNNs by self attention distillation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1013-1021.
[29] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[30] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788. |