[1] 王峰, 张旭隆, 王中华, 等. 矿井提升机智能化远程监控系统设计与应用[J]. 煤矿机械, 2023, 44(1): 208-212.
WANG F, ZHANG X L, WANG Z H, et al. Design and application of mine hoist intelligent remote monitoring system[J]. Coal Mine Machinery, 2023, 44(1): 208-212.
[2] 叶帅. 基于Neo4j的煤矿领域知识图谱构建及查询方法研究[D]. 徐州: 中国矿业大学, 2019.
YE S. Research on the construction and query method of knowledge graph in coalmine based on Neo4j[D]. Xuzhou: China University of Mining and Technology, 2019.
[3] 喻凡坤, 胡超芳, 罗晓亮, 等. 无人系统故障知识图谱的构建方法及应用[J]. 计算机测量与控制, 2020, 28(10): 66-71.
YU F K, HU C F, LUO X L, et al. Construction and application of unmanned system fault knowledge graph[J]. Computer Measurement & Control, 2020, 28(10): 66-71.
[4] 庄传志, 靳小龙, 朱伟建, 等. 基于深度学习的关系抽取研究综述[J]. 中文信息学报, 2019, 33(12): 1-18.
ZHUANG C Z, JIN X L, ZHU W J, et al. Deep learning based relation extraction: a survey[J]. Journal of Chinese Information Processing, 2019, 33(12): 1-18.
[5] 周煜坤, 陈渝, 赵容梅, 等. 基于优化信息融合策略的关系抽取[J]. 小型微型计算机系统, 2022, 43(11): 2241-2250.
ZHOU Y K, CHEN Y, ZHAO R M, et al. Relation extraction based on optimized information fusion strategy[J]. Journal of Chinese Computer Systems, 2022, 43(11): 2241-2250.
[6] 李冬梅, 张扬, 李东远, 等. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448.
LI D M, ZHANG Y, LI D Y, et al. Review of entity relation extraction methods[J]. Journal of Computer Research and Development, 2020, 57(7): 1424-1448.
[7] 郝洺. 中文短文本表示与分类方法研究[D]. 北京: 北京科技大学, 2022.
HAO M. Research on Chinese short text representation and classification[D]. Beijing: University of Science and Technology Beijing, 2022.
[8] GU D X, LI M, YANG X J, et al. An analysis of cognitive change in online mental health communities: a textual data analysis based on post replies of support seekers[J]. Information Processing and Management, 2023, 60(2): 103192.
[9] HASHIMOTO K, MIWA M, TSURUOKA Y, et al. Simple customization of recursive neural networks for semantic relation classification[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 2013: 8-21.
[10] YAN X, MOU L L, LI G, et al. Classifying relation via long short term memory networks along shortest dependency paths[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015: 1785-1794.
[11] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 2014: 1746-1751.
[12] ZENG D, LIU K, LAI S, et al. Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics, 2014.
[13] JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1, Long Papers), 2017.
[14] 邵兴林, 牛少彰. 基于分层注意力机制的细粒度情感分析[J]. 计算机科学与应用, 2019, 9(11): 2143-2153.
SHAO X L, NIU S Z. Fine-grained sentiment analysis based on hierarchical attention networks[J]. Computer Science and Application, 2019, 9(11): 2143-2153.
[15] DIETTERICH T G. Ensemble methods in machine learning[C]//Proceedings of the 1st International Workshop on Multiple Classifier Systems, 2000: 1-15.
[16] VALENTINI G, MASULLI F. Ensembles of learning machines[C]//Proceedings of the 13th Italian Workshop on Neural Nets, 2002.
[17] PENG Z, WEI S, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2, Short Papers), 2016.
[18] 陈榕, 任崇广, 王智远, 等. 基于注意力机制的CRNN文本分类算法[J]. 计算机工程与设计, 2019, 40(11): 3151-3157.
CHEN R, REN C G, WANG Z Y, et al. Attention based CRNN for text classification[J]. Computer Engineering and Design, 2019, 40(11): 3151-3157.
[19] 王乃钰, 叶育鑫, 刘露, 等. 基于深度学习的语言模型研究进展[J]. 软件学报, 2021, 32(4): 1082-1115.
WANG N Y, YE Y X, LIU L, et al. Language models based on deep learning: a review[J]. Journal of Software, 2021, 32(4): 1082-1115.
[20] GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8(3): 331-368.
[21] WANG Q, GAO Y Y, REN J D, et al. An automatic classification algorithm for software vulnerability based on weighted word vector and fusion neural network[J]. Computers & Security, 2023, 126: 103070.
[22] 可靠性维修性保障性术语集编写组. 可靠性维修性保障性术语集[M]. 北京: 国防工业出版社, 2002: 7-9.
Reliability, Maintainability and Supportability Terms Writing Group. Reliability, maintainability and supportability terms[M]. Beijing: National Defence Industry Press, 2002: 7-9.
[23] 可靠性维修性保障性术语编写组. 可靠性维修性保障性术语: GJB 451A—2005[S]. 北京: 国防工业出版社, 2005: 5-6.
Reliability, Maintainability and Supportability Terms Writing Group. Reliability, maintainability and supportability terms: GJB 451A—2005[S]. Beijing: National Defence Industry Press, 2005: 5-6.
[24] 陶书弘, 刘顺利, 何平. 型号装备寿命概念及指标验证分析[J]. 航空发动机, 2019, 45(4): 86-91.
TAO S H, LIU S L, HE P. Verification and analysis of concept and index of model equipment lifetime[J]. Aeroengine, 2019, 45(4): 86-91.
[25] ZHANG C, GUO R Z, MA X Y, et al. W-TextCNN: a TextCNN model with weighted word embeddings for Chinese address pattern classification[J]. Computers, Environment and Urban Systems, 2022, 95: 101819.
[26] 赵宇鑫, 努尔布力, 艾壮. 基于集成学习投票算法的Android恶意应用检测[J]. 计算机工程与应用, 2020, 56(22): 74-82.
ZHAO Y X, NURBOL, AI Z. Android malware detection based on ensemble learning voting algorithm[J]. Computer Engineering and Applications, 2020, 56(22): 74-82.
[27] JIN Z, CAO J, HAN G, et al. Multimodal fusion with recurrent neural networks for rumor detection on microblogs[C]//Proceedings of the 2017 ACM Multimedia Conference, 2017: 795-816.
[28] JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification[J]. arXiv:1607.01759, 2016.
[29] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[30] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587. |