[1] FENG M, BING X, GLASS M R, et al. Applying deep learning to answer selection: a study and an open task[C]//Proceedings of the Automatic Speech Recognition & Understanding, 2015: 813-820.
[2] CUI X, HAN J. Chinese medical question answer matching based on interactive sentence representation learning[J]. arXiv:2011.13573, 2020.
[3] ZHANG S, ZHANG X, WANG H, et al. Chinese medical question answer matching using end-to-end character-level multi-scale CNNs[J]. Applied Sciences, 2017, 7(8): 767.
[4] ZHANG S, ZHANG X, WANG H, et al. Multi-scale attentive interaction networks for Chinese medical question answer selection[J]. IEEE Access, 2018, 6: 74061-74071.
[5] CHEN X, YANG Z, LIANG N, et al. Co-attention fusion based deep neural network for Chinese medical answer selection[J]. Applied Intelligence, 2021, 51: 6633-6646.
[6] LIANG S, CHEN X, MA J, et al. An improved double channel long short-term memory model for medical text classification[J]. Journal of Healthcare Engineering, 2021: 1-8.
[7] LI S, YAO Y H. Improving medical Q&A matching by augmenting dual-channel attention with global similarity[J]. Computational Intelligence and Neuroscience, 2022, 2022.
[8] ZHANG Y, YANG J. Chinese NER using lattice LSTM[J]. arXiv:1805.02023, 2018.
[9] ZHANG Y, WANG Y, YANG J. Lattice LSTM for Chinese sentence representation[J]. IEEE Transactions on Audio Speech and Language Processing, 2020, 28: 1506-1519.
[10]YU H, LEE M, KAUFMAN D, et al. Development, implementation, and a cognitive evaluation of a definitional question answering system for physicians[J]. Journal of Biomedical Informatics, 2007, 40(3): 236-251.
[11] CAIRNS B L, NIELSEN R D, MASANZ J J, et al. The MiPACQ clinical question answering system[C]//Proceedings of the AMIA Annual Symposium, 2011: 171-180.
[12] SONAL J, TRIPTI D. Rule based architecture for medical question answering system[C]//Proceedings of the Second International Conference on Soft Computing for Problem Solving, 2012: 28-30.
[13] HEILMAN M, SMITH N A. Tree edit models for recognizing textual entailments, paraphrases, and answers to questions[C]//Proceedings of the Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics, 2010: 1011-1019.
[14] LU W, WU H, JIAN P, et al. An empirical study of classifier combination based word sense disambiguation[J]. IEICE Transactions on Information and Systems, 2018, 101(1): 225-233.
[15] TOBA H, MING Z Y, ADRIANI M, et al. Discovering high quality answers in community question answering archives using a hierarchy of classifiers[J]. Information Sciences, 2014, 261: 101-115.
[16] 刘芳, 于斐. 面向医疗行业的智能问答系统研究与实现[J]. 微电子学与计算机, 2012, 29(11): 95-98.
LIU F, YU F. Research and development of intelligent Q&A system for medical industry[J]. Microelectronics & Computer, 2012, 29(11): 95-98.
[17] SINHA S, NARAYANAN S. Model based answer selection[C]//Proceedings of the Textual Inference in Question Answering Workshop, 2005: 42-46.
[18] ATHRNIKOS S J, HAN H, BROOKS A D. A framework of a logic-based question-answering system for the medical domain (LOQAS-Med)[C]//Proceedings of the 2009 ACM Symposium on Applied Computing, 2009: 847-851.
[19] MOSCHITTI A, QUARTERONI S. Linguistic kernels for answer re-ranking in question answering systems[J]. Information Processing & Management, 2011, 47(6): 825-842.
[20] YEN S J, WU Y C, YANG J C, et al. A support vector machine-based context-ranking model for question answering[J]. Information Sciences, 2013, 224: 77-87.
[21] 王杰. 基于深度神经网络的中文医疗社区问答匹配技术研究[D]. 成都: 电子科技大学, 2020.
WANG J. Research on question and answer matching technology of Chinese medical community based on deep neural network[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[22] HU B, LU Z, LI H, et al. Convolutional neural network architectures for matching natural language sentences[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014: 2042-2050.
[23] TAN M, SANTOS C, XIANG B, et al. LSTM-based deep learning models for non-factoid answer selection[J]. arXiv:1511.04108, 2015.
[24] WANG W, YAN M, WU C. Multi-granularity hierarchical attention fusion networks for reading comprehension and question answering[J]. arXiv:1811.11934, 2018.
[25] 张崇宇. 基于知识图谱的自动问答系统的应用研究与实现[D]. 北京: 北京邮电大学, 2019.
ZHANG C Y. Application research and implementation of automatic question answering system based on knowledge graph[D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
[26] SHEN Y, DENG Y, YANG M, et al. Knowledge-aware attentive neural network for ranking question answer pairs[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 2018: 901-904.
[27] DENG Y, XIE Y, LI Y, et al. Contextualized knowledge-aware attentive neural network: enhancing answer selection with knowledge[J]. ACM Transactions on Information Systems, 2021, 40(1): 1-33.
[28] 钱振飞. 融合知识图谱信息的常用医疗知识问答系统的设计与实现[D]. 镇江: 江苏大学, 2022.
QIAN Z F. Design and implementation of common medical knowledge question answering system integrating knowledge graph information[D]. Zhenjiang: Jiangsu University, 2022.
[29] LAI Y, LIU Y, FFENG Y, et al. Lattice-BERT: leveraging multi-granularity representations in Chinese pre-trained language models[J]. arXiv:2104.07204, 2021. |