[1] CAO G, RUAN S, PENG Y, et al. Large-complex-surface defect detection by hybrid gradient threshold segmentation and image registration[J]. IEEE Access, 2018, 6: 36235-36246.
[2] LI R, TIAN F, CHEN S. Research on double edge detection method of midsole based on improved Otsu method[J]. IEEE Access, 2020, 8: 221539-221552.
[3] LYU R, LU J, ZHAO Z, et al. Welding defects on new energy batteries based on 2D pre-processing and improved-region-growth method in the small field of view[J]. Measurement Science and Technology, 2023, 35(1): 015409.
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[5] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[6] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[8] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[9] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[10] GAI R, CHEN N, YUAN H. A detection algorithm for cherry fruits based on the improved YOLO-v4 model[J]. Neural Computing and Applications, 2023, 35(19): 13895-13906.
[11] WU T H, WANG T W, LIU Y Q. Real-time vehicle and distance detection based on improved Yolo v5 network[C]//Proceedings of the 2021 3rd World Symposium on Artificial Intelligence, 2021: 24-28.
[12] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[13] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[14] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21-37.
[15] LI Z, WEI X, HASSABALLAH M, et al. A deep learning model for steel surface defect detection[J]. Complex & Intelligent Systems, 2023: 1-13.
[16] YU X, LYU W, WANG C, et al. Progressive refined redistribution pyramid network for defect detection in complex scenarios[J]. Knowledge-Based Systems, 2023, 260: 110176.
[17] MA H, ZHANG Z, ZHAO J. A novel ST-YOLO network for steel-surface-defect detection[J]. Sensors, 2023, 23(22): 9152.
[18] XIE Y, HU W, XIE S, et al. Surface defect detection algorithm based on feature-enhanced YOLO[J]. Cognitive Computation, 2023, 15(2): 565-579.
[19] ZHAO C, SHU X, YAN X, et al. RDD-YOLO: a modified YOLO for detection of steel surface defects[J]. Measurement, 2023, 214: 112776.
[20] ZHANG D, ZHENG Z, LI M, et al. CSART: channel and spatial attention-guided residual learning for real-time object tracking[J]. Neurocomputing, 2021, 436: 260-272.
[21] ZHENG H, CHEN J, CHEN L, et al. Feature enhancement for multi-scale object detection[J]. Neural Processing Letters, 2020, 51: 1907-1919.
[22] YOU S, XIE X, FENG Y, et al. Multi-scale aggregation transformers for multispectral object detection[J]. IEEE Signal Processing Letters, 2023.
[23] NISHIYAMA T, KUMAGAI A, KAMIYA K, et al. SILU: strategy involving large-scale unlabeled logs for improving malware detector[C]//Proceedings of the 2020 IEEE Symposium on Computers and Communications, 2020: 1-7.
[24] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[25] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[26] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[27] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[28] YANG Z, ZHU L, WU Y, et al. Gated channel transformation for visual recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11794-11803.
[29] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803.
[30] LI T, REN J, YANG Q, et al. Defect detection algorithm for battery cell casings based on dual-coordinate attention and small object loss feedback[J]. Processes, 2024, 12(3): 601.
[31] TANG M, LI Y, YAO W, et al. A strip steel surface defect detection method based on attention mechanism and multi-scale maxpooling[J]. Measurement Science and Technology, 2021, 32(11): 115401.
[32] CHEN W, ZHENG Y, LIAO K, et al. Small target detection algorithm for printing defects detection based on context structure perception and multi-scale feature fusion[J]. Signal, Image and Video Processing, 2024, 18(1): 657-667.
[33] LUO W, LI Y, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016: 4905-4913.
[34] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv:1511.07122, 2015.
[35] KAISER L, GOMEZ A N, CHOLLET F. Depthwise separable convolutions for neural machine translation[J]. arXiv:1706. 03059, 2017.
[36] CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 12021-12031.
[37] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[38] HAN K, WANG Y, TIAN Q, et al. Ghostnet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[39] LI H, LI J, WEI H, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv:2206.02424, 2022.
[40] TIAN R, JIA M. DCC-CenterNet: a rapid detection method for steel surface defects[J]. Measurement, 2022, 187: 110211. |