[1] PEPPERELL C S. Evolution of tuberculosis pathogenesis[J]. Annual Review of Microbiology, 2022, 76: 661-680.
[2] KOCH A, MIZRAHI V. Mycobacterium tuberculosis[J]. Trends in Microbiology, 2018, 26(6): 555-556.
[3] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA, 2022, 72(1): 7-33.
[4] 何玉麟, 许传军, 李宏军, 等. 肺结核影像诊断标准[J]. 临床放射学杂志, 2020, 39(11): 2142-2146.
HE Y L, XU C J, LI H J, et al. Imaging diagnostic criteria for pulmonary tuberculosis[J]. Journal of Clinical Radiology, 2020, 39(11): 2142-2146.
[5] 吴键, 侯代伦. 深度学习在肺结核影像诊断中的应用[J]. 中国防痨杂志, 2022, 44(1): 91-94.
WU J, HOU D L. Application of deep learning in pulmonary tuberculosis imaging diagnosis[J]. Chinese Journal of Antituberculosis, 2022, 44(1): 91-94.
[6] 赵晓平, 王荣发, 孙中波, 等. 改进DenseNet的乳腺癌病理图像八分类研究[J]. 计算机工程与应用, 2023, 59(5): 213-221.
ZHAO X P, WANG R F, SUN Z B, et al. Research on eight classifications of breast cancer pathological images based on improved dense net[J]. Computer Engineering and Applications, 2023, 59(5): 213-221.
[7] 吴辰文, 梁雨欣, 田鸿雁. 改进卷积神经网络的COVID-19 CT影像分类方法研究[J]. 计算机工程与应用, 2022, 58(2): 225-234.
WU C W, LIANG Y X, TIAN H Y. Research on COVID-19 CT image classification method based on improved convolutional neural network[J]. Computer Engineering and Applications, 2022, 58(2): 225-234.
[8] IQBAL A, USMAN M, AHMED Z. An efficient deep learning-based framework for tuberculosis detection using chest X-ray images[J]. Tuberculosis, 2022, 136: 102234.
[9] 凌语, 孙自强. 基于卷积神经网络的乳腺病理图像识别算法[J]. 江苏大学学报 (自然科学版), 2019, 40(5): 573-578.
LING Y, SUN Z Q. Recognition algorithm of breast pathological images based on convolutional neural network[J]. Journal of Jiangsu University (Natural Science Edition), 2019, 40(5): 573-578.
[10] RAHMAN M, CAO Y, SUN X, et al. Deep pre-trained networks as a feature extractor with XGBoost to detect tuberculosis from chest X-ray[J]. Computers & Electrical Engineering, 2021, 93: 107252.
[11] HERRERA D M, HAWORTH B M, KEYNAN Y. Review of evidence for using chest X-rays for active tuberculosis screening in long-term care in Canada[J]. Frontiers in Public Health, 2020, 8: 16.
[12] LI J, YIP B H K, LEUNG C, et al. Screening for latent and active tuberculosis infection in the elderly at admission to residential care homes: a cost-effectiveness analysis in an intermediate disease burden area[J]. Plos One, 2018, 13(1): 1-18.
[13] ALFADHLI F H O, MAND A A, SAYEED M S, et al. Classification of tuberculosis with SURF spatial pyramid features[C]//Proceedings of the 2017 International Conference on Robotics, Automation and Sciences (ICORAS), 2017: 1-5.
[14] SINGH N, HAMDE S. Tuberculosis detection using shape and texture features of chest X-rays[C]//Proceedings of the 7th ICIECE 2018. Singapore: Springer, 2019: 43-50.
[15] CHANDRA T B, VERMA K, SINGH B K, et al. Automatic detection of tuberculosis related abnormalities in Chest X-ray images using hierarchical feature extraction scheme[J]. Expert Systems with Applications, 2020, 158: 113514.
[16] LIU C, CAO Y, ALCANTARA M, et al. TX-CNN: detecting tuberculosis in chest X-ray images using convolutional neural network[C]//Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), 2017: 2314-2318.
[17] HOODA R, SOFAT S, KAUR S, et al. Deep-learning: a potential method for tuberculosis detection using chest radiography[C]//Proceedings of the 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), 2017: 497-502.
[18] DINESH J S R, RAJESH K B. Tuberculosis (TB) detection system using deep neural networks[J]. Neural Computing and Applications, 2019, 31: 1533-1545.
[19] SZEGEDY C, VANHOUCKE V, LOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826.
[20] 张冉. 注意力引导的深度学习算法在胸部X光肺结核检测中的应用研究[D]. 济南: 山东师范大学, 2020.
ZHANG R. Research on attention-guided deep learning algorithm in chest X-ray tuberculosis detection[D]. Jinan: Shandong Normal University, 2020.
[21] RAJPURKAR P, O’CONNELL C, SCHECHTER A, et al. CheXaid: deep learning assistance for physician diagnosis of tuberculosis using chest X-rays in patients with HIV[J]. NPJ Digital Medicine, 2020, 3(1): 115.
[22] ALAWI A E B, AL-BASSER A, SALLAM A, et al. Convolutional neural networks model for screening tuberculosis disease[C]//Proceedings of the 2021 International Conference of Technology, Science and Administration (ICTSA), 2021: 1-5.
[23] DEY S, ROYCHOUDHURY R, MALAKAR S, et al. An optimized fuzzy ensemble of convolutional neural networks for detecting tuberculosis from Chest X-ray images[J]. Applied Soft Computing, 2022, 114: 108094.
[24] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
[25] ZHANG X Y, ZHOU X Y, LIN M X, et al. Shufflenet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856.
[26] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[27] SANDLER M, HOWARD A, ZHU M, et al. MobileNetv2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[28] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[29] HAN K, WANG Y, GUO J, et al. Vision GNN: an image is worth graph of nodes[C]//Advances in Neural Information Processing Systems, 2022: 8291-8303.
[30] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[31] LIU Z, MAO H, WU C Y, et al. A convnet for the 2020s[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 11976 -11986.
[32] HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324. |