Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (4): 30-42.DOI: 10.3778/j.issn.1002-8331.2209-0033
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHANG Mingxing, ZHANG Xiaoxiong, LIU Shanshan, TIAN Hao, YANG Qinqin
Online:
2023-02-15
Published:
2023-02-15
张明星,张骁雄,刘姗姗,田昊,杨琴琴
ZHANG Mingxing, ZHANG Xiaoxiong, LIU Shanshan, TIAN Hao, YANG Qinqin. Review of Recommendation Systems Using Knowledge Graph[J]. Computer Engineering and Applications, 2023, 59(4): 30-42.
张明星, 张骁雄, 刘姗姗, 田昊, 杨琴琴. 利用知识图谱的推荐系统研究综述[J]. 计算机工程与应用, 2023, 59(4): 30-42.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2209-0033
[1] GUO Q Y,ZHUANG F Z,QIN C,et al.A survey on knowledge graph-based recommender systems[J].IEEE Transactions on Knowledge and Data Engineering,2020,50(7):937-954. [2] SACENTI J A P,FILETO R,WILLRICH R.Knowledge graph summarization impacts on movie recommendations[J].Journal of Intelligent Information Systems,2022,58(1):43-66. [3] CHAVES P D V,PEREIRA B L,SANTOS R L.Efficient online learning to rank for sequential music recommendation[C]//Proceedings of the ACM Web Conference.New York:ACM,2022:2442-2450. [4] QI T,WU F Z,WU C H,et al.Personalized news recommendation with knowledge-aware interactive matching[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2021:61-70. [5] FENG Y F,HU B B,LYU F Y,et al.ATBRG:adaptive target-behavior relational graph network for effective recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2020:2231-2240. [6] LEE D,OH B,SEO S,et al.News recommendation with topic-enriched knowledge graphs[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.New York:ACM,2020:695-704. [7] TAO S H,QIU R H,PING Y,et al.Multi-modal knowledge-aware reinforcement learning network for explainable recommendation[J].Knowledge-Based Systems,2021(227):107217. [8] CHEN B,GUO W,TANG R M,et al.TGCN:tag graph convolutional network for tag-aware recommendation[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.New York:ACM,2020:155-164. [9] BRAMS A H,JAKOBSEN A L,JENDAL T E,et al.MindReader:recommendation over knowledge graph entities with explicit user ratings[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.New York:ACM,2020:2975-2982. [10] 秦川,祝恒书,庄福振,等.基于知识图谱的推荐系统研究综述[J].中国科学:信息科学,2020,50(7):937-956. QIN C,ZHU H S,ZHUANG F Z,et al.A survey on knowledge graph-based recommender systems[J].Science China:Information Sciences,2020,50(7):937-956. [11] 朱冬亮,文奕,万子琛.基于知识图谱的推荐系统研究综述[J].数据分析与知识发现,2021,5(12):1-13. ZHU D L,WEN Y,WAN Z C.Review of recommendation systems based on knowledge graph[J].Data Analysis and Knowledge Discovery,2021,5(12):1-13. [12] ADOMAVICIUS G,TUZHILIN A.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749. [13] SU X Y,KHOSHGOFTAAR T M.A survey of collaborative filtering techniques[J].Advances in Artificial Intelligence,2009,8:421425. [14] RENDLE S.Factorization machines with libFM[J].ACM Transactions on Intelligent Systems and Technology,2012,3(3):57. [15] HUANG Z H,YU C,NI J,et al.An efficient hybrid recommendation model with deep neural networks[J].IEEE Access,2019,7:137900-137912. [16] CAO X S,SHI Y L,YU H,et al.DEKR:description enhanced knowledge graph for machine learning method recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2021:203-212. [17] ZHANG F Z,YUAN N J,LIAN D F,et al.Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2016:353-362. [18] WANG H W,ZHANG F Z,XIE X,et al.DKN:deep knowledge-aware network for news recommendation[C]//Proceedings of the World Wide Web Conference.New York:ACM,2018:1835-1844. [19] WANG X,HE X N,CAO Y X,et al.KGAT:knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference.New York:ACM,2019:950-958. [20] PALUMBO E,RIZZO G,TRONCY R.Entity2Rec:learning user-item relatedness from knowledge graphs for top-n item recommendation[C]//Proceedings of the 11th ACM Conference on Recommender Systems.New York:ACM,2017:32-36. [21] 张屹晗,王巍,刘华真,等.基于知识图嵌入的协同过滤推荐算法[J].计算机应用研究,2021,38(12):3590-3596. ZHANG Y H,WANG W,LIU H Z,et al.Collaborative filtering recommendation algorithm based on knowledge graph embedding[J].Application Research of Computers,2021,38(12):3590-3596. [22] CAO Y X,WANG X,HE X N,et al.Unifying knowledge graph learning and recommendation:towards a better understanding of user preferences[C]//Proceedings of the World Wide Web Conference.New York:ACM,2019:151-161. [23] HENK V,VAHDATI S,NAYYERI M,et al.Metaresearch recommendations using knowledge graph embeddings[C/OL]//RecNLP Workshop of AAAI Conference(2019-01-28)[2022-09-11].https://recnlp2019.github.io/papers/RecNLP2019_paper_20.pdf. [24] 高仰,刘渊.融合社交关系和知识图谱的推荐算法[J].计算机科学与探索,2023,17(1):238-250. GAO Y,LIU Y.Recommendation algorithm combining social relationship and knowledge graph[J].Journal of Frontiers of Computer Science and Technology,2023,17(1):238-250. [25] AI Q Y,AZIZI V,CHEN X,et al.Learning heterogeneous knowledge base embeddings for explainable recommendation[J].Algorithms,2018,11(9):137-154. [26] WANG Y Q,DONG L Y,ZHANG H,et al.An enhanced multi-modal recommendation based on alternate training with knowledge graph representation[J].IEEE Access,2020,8:213012-213026. [27] WANG H W,ZHANG F Z,ZHAO M,et al.Multi-task feature learning for knowledge graph enhanced recommendation[C]//Proceedings of the World Wide Web Conference.New York:ACM,2019:2000-2010. [28] POLIGNANO M,MUSTO C,DE GEMMIS M,et al.Together is better:hybrid recommendations combining graph embeddings and contextualized word representations[C]//Proceedings of the 15th ACM Conference on Recommender Systems.New York:ACM,2021:187-198. [29] 冀欣婷,诺明花.一种融合标签和知识图谱的推荐方法[J].中文信息学报,2022,36(6):125-134. JI X T,NUO M H.A recommendation method combining tag and knowledge graph[J].Journal of Chinese Information Processing,2022,36(6):125-134. [30] ZHAO X,CHENG Z,ZHU L,et al.UGRec:modeling directed and undirected relations for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2021:193-202. [31] YU X,REN X,SUN Y Z,et al.Personalized entity recommendation:a heterogeneous information network approach[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining.New York:ACM,2014:283-292. [32] ZHANG C,WANG Y,ZHU L,et al.Multi-graph heterogeneous interaction fusion for social recommendation[J].ACM Transactions on Information Systems,2021,40(2):1-26. [33] DONG Y X,CHAWLA N V,SWAMI A.metapath2vec:scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2017:135-144. [34] HU B B,SHI C,ZHAO W X,et al.Leveraging meta-path based context for top-n recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2018:1531-1540. [35] XIAN Y K,FU Z H,MUTHUKRISHNAN S,et al.Reinforcement knowledge graph reasoning for explainable recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2019:285-294. [36] CHEN H X,LI Y C,SUN X G,et al.Temporal meta-path guided explainable recommendation[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining.New York:ACM,2021:1056-1064. [37] ZHAO H,YAO Q M,LI J D,et al.Meta-graph based recommendation fusion over heterogeneous information networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2017:635-644. [38] HAN Z Y,XU F L,SHI J H,et al.Genetic meta-structure search for recommendation on heterogeneous information network[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.New York:ACM,2020:455-464. [39] HUANG Z P,ZHENG Y D,CHENG R,et al.Meta structure:computing relevance in large heterogeneous information networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2016:1595-1604. [40] WANG H W,ZHANG F Z,WANG J L,et al.RippleNet:propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information & Knowledge Management.New York:ACM,2018:417-426. [41] 张雪茹,官磊.基于知识图谱的用户偏好推荐算法[J].计算机应用,2021,40(S2):59-65. ZHANG X R,GUAN L.User preference recommendation algorithm based on knowledge graph[J].Application Research of Computers,2021,40(S2):59-65. [42] WANG H W,ZHAO M,XIE X,et al.Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the World Wide Web Conference,2019:3307-3313. [43] WANG H W,ZHANG F Z,ZHANG M D,et al.Knowledge graph convolutional networks for recommender systems with label smoothness regularization[C]//Proceedings of the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.New York:ACM,2019:968-977. [44] WANG Z,LIN G Y,TAN H B,et al.CKAN:collaborative knowledge-aware attentive network for recommender systems[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2020:219-228. [45] WANG X,HUANG T L,WANG D X,et al.Learning intents behind interactions with knowledge graph for recommendation[C]//Proceedings of the Web Conference,2021:878-887. [46] 唐宏,范森,唐帆.融合协同知识图谱与优化图注意网络的推荐算法[J].计算机工程与应用,2022,58(19):98-106. TANG H,FAN S,TANG F.Recommendation algorithm integrating collaborative knowledge graph and optimizing graph attention network[J].Computer Engineering and Applications,2022,58(19):98-106. [47] TANG X L,WANG T Y,YANG H Z,et al.AKUPM:attention-enhanced knowledge-aware user preference model for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2019:1891-1899. [48] YANG Y H,HUANG C,XIA L H,et al.Knowledge graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,ACM,2022:1434-1443. [49] ZOU D,WEI W,MAO X L,et al.Multi-level cross-view contrastive learning for knowledge-aware recommender system[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,ACM,2022:1358-1368. [50] TU K,CUI P,WANG D X,et al.Conditional graph attention networks for distilling and refining knowledge graphs in recommendation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management.New York:ACM,2021:1834-1843. [51] LIU D Y,LIAN J,WANG S Y,et al.KRED:knowledge-aware document representation for news recommendations[C]//Processing of the 14th ACM Conference on Recommender Systems,2020:200-209. [52] TIAN Y,YANG Y H,REN X D,et al.Joint knowledge pruning and recurrent graph convolution for news recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2021:51-60. [53] WANG Q,MAO Z D,WANG B,et al.Knowledge graph embedding:a survey of approaches and applications[J].IEEE Transactions on Knowledge and Data Engineering,2017,29(12):2724-2743. [54] BORDES A,USUNIER N,GARCIA D A,et al.Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems,2013,26:1-9. [55] WANG Z,ZHANG J W,FENG J L,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence,2014. [56] LIN Y K,LIU Z Y,SUN M S,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence,2015:2181-2187. [57] JI G L,HE S Z,XU L H,et al.Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing,2015:687-696. [58] HE S Z,LIU K,JI G L,et al.Learning to represent knowledge graphs with gaussian embedding[C]//Proceedings of the 24th ACM International Conference on Information & Knowledge Management.New York:ACM,2015:623-632. [59] HAN X,HUANG M L,ZHU X Y.TransG:a generative model for knowledge graph embedding[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics,2016:2316-2325. [60] YANG B S,YIH W,HE X D,et al.Embedding entities and relations for learning and inference in knowledge bases[J].Arxiv:1412.6575,2014. [61] CHEN C,ZHANG M,WANG C Y,et al.An efficient adaptive transfer neural network for social-aware recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2019:225-234. [62] BORDES A,GLOROT X,WESTON J,et al.A semantic matching energy function for learning with multi-relational data[J].Machine Learning,2014,94(2):233-259. [63] DONG X,GABRILOVICH E,HEITZ G,et al.Knowledge vault:a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2014:601-610. [64] DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [65] CHEN T Q,ZHANG W N,LU Q X,et al.SVDFeature:a toolkit for feature-based collaborative filtering[J].The Journal of Machine Learning Research,2012,13(1):3619-3622. [66] WANG Y,LIU Z W,FAN Z W,et al.DSKREG:differentiable sampling on knowledge graph for recommendation with relational GNN[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management.New York:ACM,2021:3513-3517. [67] ZHAO W X,MU S,HOU Y,et al.Recbole:towards a unified,comprehensive and efficient framework for recommendation algorithms[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management.New York:ACM,2021:4653-4664. [68] AIOLLI F.Efficient top-n recommendation for very large scale binary rated datasets[C]//Proceedings of the 7th ACM Conference on Recommender Systems.New York:ACM,2013:273-280. [69] LEHMANN J,ISELE RT,JAKOB M,et al.DBpedia-a large-scale,multilingual knowledge base extracted from Wikipedia[J].Semantic Web,2015,6(2):167-195. [70] BOLLACKER K,EVANS C,PARITOSH P,et al.Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.New York:ACM,2008:1247-1250. [71] SUCHANEK F M,KASNECI G,WEIKUM G.YAGO:a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web.New York:ACM,2007:697-706. [72] TAI C Y,WU M G,CHU Y W,et al.MVIN:learning multiview items for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2020:99-108. [73] SCHEDL M.The LFM-1b dataset for music retrieval and recommendation[C]//Proceedings of the ACM on International Conference on Multimedia Retrieval.New York:ACM,2016:103-110. [74] MCAULEY J,TARGETT C,SHI Q,et al.Image-based recommendations on styles and substitutes[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2015:43-52. [75] GroupLens MovieLens dataset[EB/OL].(1997)[2022-08-18].https://grouplens.org/datasets/movielens/. [76] YANG D Q,GUO Z K,WANG Z Y,et al.A knowledge-enhanced deep recommendation framework incorporating GAN-based models[C]//Proceedings of the 2018 IEEE International Conference on Data Mining.Piscataway:IEEE,2018:1368-1373. [77] ZIEGLER C N,MCNEE S M,KONSTAN J A,et al.Improving recommendation lists through topic diversification[C]//Proceedings of the 14th International Conference on World Wide Web,2005:22-32. [78] ZHOU K,WANG X L,ZHOU Y H,et al.CRSLab:an open-source toolkit for building conversational recommender system[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing:System Demonstrations,2021:185-193. [79] ZHOU K,ZHAO W X,BIAN S Q,et al.Improving conversational recommender systems via knowledge graph based semantic fusion[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2020:1006-1014. [80] SUN F Y,HOFFMANN J,VERMA V,et al.InfoGraph:unsupervised and semi-supervised graph-level representation learning via mutual information maximization[J].arXiv:1908.01000,2019. [81] WU F Z,QIAO Y,CHEN J H,et al.MIND:a large-scale dataset for news recommendation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,2020:3597-3606. [82] QI TAO,WU F Z,WU C H,et al.PP-Rec:news recommendation with personalized user interest and time-aware news popularity[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing,2021:5457-5467. [83] VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph attention networks[C]//Proceedings of the 2018 International Conference on Learning Representations,2018:12-23. [84] WU J C,WANG X,FENG F L,et al.Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2021:726-735. [85] CHEN W,HUANG P P,XU J M,et al.POG:personalized outfit generation for fashion recommendation at Alibaba iFashion[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2019:2662-2670. [86] 沈冬东,汪海涛,姜瑛,等.基于知识图谱嵌入与多神经网络的序列推荐算法[J].计算机工程与科学,2020,42(9):1661-1669. SHEN D D,WANG H T,JIANG Y,et al.A sequeue recommedation algorithm based on knowledge graph embedding and multiple neural networks[J].Computer Enginner and Science,2020,42(9):1661-1669. [87] WANG C Y,ZHANG M,MA W Z,et al.Make it a chorus:knowledge-and time-aware item modeling for sequential recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Processing Information Retrieval.New York:ACM,2020:109-118. [88] Yelp challenge dataset[EB/OL].(2013)[2022-08-18].https://www.kaggle.com/c/yelp-recsys-2013/. [89] SHI M H,SHEN D R,KOU Y,et al.Attentional memory network with correlation-based embedding for time-aware POI recommendation[J].Knowledge-Based Systems,2021(214):106747. [90] TANG J K,JIN J H,MIAO Z J,et al.Region-aware POI recommendation with semantic spatial graph[C]//Proceedings of the 24th International Conference on Computer Supported Cooperative Work in Design,2021:214-219. [91] SUN R,CAO X Z,ZHAO Y,et al.Multi-modal knowledge graphs for recommender systems[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.New York:ACM,2020:1405-1414. [92] ZHAO K Z,WANG X T,ZHANG Y R,et al.Leveraging demonstrations for reinforcement recommendation reasoning over knowledge graphs[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2020:239-248. [93] ZHAO W X,HE G,YANG K,et al.KB4Rec:a data set for linking knowledge bases with recommender systems[J].Data Intelligence,2019,1(2):121-136. [94] WANG W,FENG F,HE X,et al.Clicks can be cheating:counterfactual recommendation for mitigating clickbait issue[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2021:1288-1297. [95] LI T,SONG L,FRAGOULI C.Federated recommendation system via differential privacy[C]//2020 IEEE International Symposium on Information Theory.Piscataway:IEEE,2020:2592-2597. [96] CHEN C,WU H,SU J,et al.Differential private knowledge transfer for privacy-preserving cross-domain recommendation[C]//Proceedings of the ACM Web Conference 2022.New York:ACM,2022:1455-1465. [97] XIE L,HU Z,CAI X,et al.Explainable recommendation based on knowledge graph and multi-objective optimization[J].Complex & Intelligent Systems,2021,7(3):1241-1252. |
[1] | ZHANG Jiayu, GUO Mei, ZHANG Yongliang, LI Mei, GENG Nan, GENG Yaojun. Research on Construction of Fine-Grained Knowledge Graph of Apple Diseases and Pests [J]. Computer Engineering and Applications, 2023, 59(5): 270-280. |
[2] | WU Guodong, WANG Xueni, LIU Yuliang. Research Advances on Graph Neural Network Recommendation of Knowledge Graph Enhancement [J]. Computer Engineering and Applications, 2023, 59(4): 18-29. |
[3] | WANG Yonggui, ZHAO Xiaoxuan. Self-Supervised Graph Neural Networks for Session-Based Recommendation [J]. Computer Engineering and Applications, 2023, 59(3): 244-252. |
[4] | WANG Yiru, SHI Donghui. Ontology Construction of Architectural Intangible Cultural Heritage Knowledge Using CIDOC CRM [J]. Computer Engineering and Applications, 2023, 59(3): 317-326. |
[5] | XIAO Lizhong, ZANG Zhongxing, SONG Saisai. Research on Cascaded Labeling Framework for Relation Extraction with Self-Attention [J]. Computer Engineering and Applications, 2023, 59(3): 77-83. |
[6] | HU Hao, GAO Jing, LIU Zhenyu. Research and Construction of Genetic Knowledge Graph of Milk Yield Traits in Dairy Cows [J]. Computer Engineering and Applications, 2023, 59(2): 299-305. |
[7] | JING Li, YAO Ke. Research on Text Classification Based on Knowledge Graph and Multimodal [J]. Computer Engineering and Applications, 2023, 59(2): 102-109. |
[8] | ZHANG Haitao, SU Lin. Variational Auto-Encoder Combined with Knowledge Graph Zero-Shot Learning [J]. Computer Engineering and Applications, 2023, 59(1): 236-243. |
[9] | LUO Chengtian, YE Xia. Survey on Knowledge Graph-Based Recommendation Methods [J]. Computer Engineering and Applications, 2023, 59(1): 49-60. |
[10] | XU Youwei, ZHANG Hongjun, CHENG Kai, LIAO Xianglin, ZHANG Zixuan, LI Lei. Comprehensive Survey on Knowledge Graph Embedding [J]. Computer Engineering and Applications, 2022, 58(9): 30-50. |
[11] | ZHANG Xin, LIU Siyuan, XU Yanling. Knowledge-Aware Recommendation Algorithm Combined with Attention Mechanism [J]. Computer Engineering and Applications, 2022, 58(9): 168-174. |
[12] | YAN Zhihao, LIU Jingju, GUO Hui, GUO Bingyang. CDN Domain Recognition Method Based on DNS Knowledge Graph [J]. Computer Engineering and Applications, 2022, 58(6): 149-156. |
[13] | TANG Hong, FAN Sen, TANG Fan , ZHU Longjiao. Recommendation Algorithm Combining Knowledge Graph and Attention Mechanism [J]. Computer Engineering and Applications, 2022, 58(5): 94-103. |
[14] | QIU Ye, SHAO Xiongkai, GAO Rong, WANG Chunzhi, LI Jing. Social Recommendation Algorithm Based on Attention Gated Neural Network [J]. Computer Engineering and Applications, 2022, 58(5): 112-118. |
[15] | XIONG Zhongmin, MA Haiyu, LI Shuai, ZHANG Na. Summary of Application and Prospect Analysis of Knowledge Graphs in Marine Field [J]. Computer Engineering and Applications, 2022, 58(3): 15-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||