Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (4): 43-53.DOI: 10.3778/j.issn.1002-8331.2209-0048
• Research Hotspots and Reviews • Previous Articles Next Articles
GAN Yating, AN Jianye, XU Xue
Online:
2023-02-15
Published:
2023-02-15
淦亚婷,安建业,徐雪
GAN Yating, AN Jianye, XU Xue. Survey of Short Text Classification Methods Based on Deep Learning[J]. Computer Engineering and Applications, 2023, 59(4): 43-53.
淦亚婷, 安建业, 徐雪. 基于深度学习的短文本分类方法研究综述[J]. 计算机工程与应用, 2023, 59(4): 43-53.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2209-0048
[1] 吴思慧,陈世平.结合TFIDF的Self-Attention-Based Bi-LSTM的垃圾短信识别[J].计算机系统应用,2020,29(9):171-177. WU S H,CHEN S P.Spam message recognition based on TFIDF and Self-Attention-Based Bi-LSTM[J].Computer Application Systems,2020,29(9):171-177. [2] 谢秦,张清华,王国胤.基于相似度量的自适应三支垃圾邮件过滤器[J].计算机研究与发展,2019,56(11):2410-2423. XIE Q,ZHANG Q H,WNAG G Y.An adaptive three-way spam filter with similarity measure[J].Journal of Computer Research and Development,2019,56(11):2410-2423. [3] XU G,YU Z,YAO H,et al.Chinese text sentiment analysis based on extended sentiment dictionary[J].IEEE Access,2019,7:43749-43762. [4] BIAN T,XIAO X,XU T,et al.Rumor detection on social media with bi-directional graph convolutional networks[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence,2020:549-556. [5] 马哲坤,涂艳.基于知识图谱的网络舆情突发话题内容监测研究[J].情报科学,2019,37(2):33-39. MA Z K,TU Y.Online emerging topic content monitoring based on knowledge graph[J].Information Science,2019,37(2):33-39. [6] 郑捷.NLP汉语自然语言处理原理与实践[M].北京:电子工业出版社,2017:3-5. ZHEN J.Principles and practices of NLP Chinese natural language processing[M].Beijing:Publishing House of Electronics Industry,2017:3-5. [7] CHEN M,JIN X,SHEN D.Short text classification improved by learning multi-granularity topics[C]//22nd International Joint Conference on Artificial Intelligence,2011. [8] LEE K,PALSETIA D,NARAYANAN R,et al.Twitter trending topic classification[C]//2011 IEEE 11th International Conference on Data Mining Workshops,2011:251-258. [9] 胡勇军,江嘉欣,常会友.基于LDA高频词扩展的中文短文本分类[J].现代图书情报技术,2013(6):42-48. HU Y J,JIANG J X,CHANG H Y.A new method of key words extraction for Chinese short-text classification[J].New Technology of Library and Information Service,2013(6):42-48. [10] 张志飞,苗夺谦,高灿.基于LDA主题模型的短文本分类方法[J].计算机应用,2013,33(6):1587-1590. ZHANG Z F,MIAO D Q,GAO C.Short text classification using latent Dirichlet allocation[J].Journal of Computer Applications,2013,33(6):1587-1590. [11] ZHOU F G,ZHANG F,YANG B R,et al.Research on short text classification algorithm based on statistics and rules[C]//2010 3rd International Symposium on Electronic Commerce and Security,2010:3-7. [12] 刘琴,袁家政,翁长虹.基于深度学习的短文本分类研究综述[C]//中国计算机用户协会网络应用分会2017年第二十一届网络新技术与应用年会论文集,2017:17-21. LIU Q,YUAN J Z,WENG C H.Survey of short text classification based on deep learning[C]//Proceedings of the 21st Annual Conference on New Network Technologies and Applications 2017,Network Application Branch of China Computer Users Association,2017:17-21. [13] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [14] LIPTON Z C,BERKOWITZ J,ELKAN C.A critical review of recurrent neural networks for sequence learning[J].arXiv:1506.00019,2015. [15] BRUNA J,ZAREMBA W,SZLAM A,et al.Spectral networks and locally connected networks on graphs[J].arXiv:1312.6203,2013. [16] KIM Y.Convolutional neural networks for sentence classifification[J].arXiv:1408.5882,2014. [17] CONNEAU A,SCHWENK H,BARRAULT L,et al.Very deep convolutional networks for text classification[J].arXiv:1606.01781,2016. [18] LE H T,CERISARA C,DENIS A.Do convolutional networks need to be deep for text classification?[J].arXiv:1707.04108,2017. [19] JOHNSON R,ZHANG T.Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers),2017:562-570. [20] GUO J,YUE B,XU G,et al.An enhanced convolutional neural network model for answer selection[C]//Proceedings of the 26th International Conference on World Wide Web Companion,2017:789-790. [21] WANG H,HE J,ZHANG X,et al.A short text classification method based on n-gram and CNN[J].Chinese Journal of Electronics,2020,29(2):248-254. [22] WANG P,XU B,XU J,et al.Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification[J].Neurocomputing,2016,174:806-814. [23] SOTTHISOPHA N,VATEEKUL P.Improving short text classification using fast semantic expansion on multichannel convolutional neural network[C]//2018 19th IEEE/ACIS International Conference on Software Engineering,Artificial Intelligence,Networking and Parallel/Distributed Computing,2018:182-187. [24] WANG J,WANG Z,ZHANG D,et al.Combining knowledge with deep convolutional neural networks for short text classification[C]//26th International Joint Conference on Artificial Intelligence,2017:2915-2921. [25] WANG H,TIAN K,WU Z,et al.A short text classification method based on convolutional neural network and semantic extension[J].International Journal of Computational Intelligence Systems,2021,14(1):367-375. [26] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural computation,1997,9(8):1735-1780. [27] GERS F A,SCHMIDHUBER J,CUMMINS F.Learning to forget:continual prediction with LSTM[J].Neural computation,2000,12(10):2451-2471. [28] CHO K,VAN MERRI?NBOER B,GULCEHRE C,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[J].arXiv:1406.1078,2014. [29] 刘建伟,宋志妍.循环神经网络研究综述[J].控制与决策,2022,37(11):2753-2768. LIU J W,SONG Z Y.Overview of recurrent neural networks[J].Control and Decision,2022,37(11):2753-2768. [30] LIU P,QIU X,HUANG X.Recurrent neural network for text classification with multi-task learning[J].arXiv:1605. 05101,2016. [31] TAI K S,SOCHER R,MANNING C D.Improved semantic representations from tree-structured long short-term memory networks[J].arXiv:1503.00075,2015. [32] ZHANG Y,XU H,XU K.Chinese short text classification based on dependency syntax information[C]//2021 5th International Conference on Compute and Data Analysis,2021:133-138. [33] ZHOU Y,XU B,XU J,et al.Compositional recurrent neural networks for Chinese short text classification[C]//2016 IEEE/WIC/ACM International Conference on Web Intelligence,2016:137-144. [34] GAO M X,LI J Y.Chinese short text classification method based on word embedding and long short-term memory neural network[C]//2021 International Conference on Artificial Intelligence,Big Data and Algorithms,2021:91-95. [35] KALJAHI R,FOSTER J.Any-gram kernels for sentence classification:a sentiment analysis case study[J].arXiv:1712.07004,2017. [36] 宋明,刘彦隆.Bert在微博短文本情感分类中的应用与优化[J].小型微型计算机系统,2021,42(4):714-718. SONG M,LIU Y L.Application and optimization of Bert in sentiment classification of Weibo short text[J].Journal of Chinese Computer Systems,2021,42(4):714-718. [37] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems,2017,30:5998-6008. [38] YANG Z,YANG D,DYER C,et al.Hierarchical attention networks for document classification[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2016:1480-1489. [39] ZHOU Y,XU J,CAO J,et al.Hybrid attention networks for Chinese short text classification[J].Computación y Sistemas,2017,21(4):759-769. [40] 陶志勇,李小兵,刘影,等.基于双向长短时记忆网络的改进注意力短文本分类方法[J].数据分析与知识发现,2019,3(12):21-29. TAO Z Y,LI X B,LIU Y,et al.Classifying short texts with improved-attention based bidirectional long memory network[J].Data Analysis and Knowledge Discovery,2019,3(12):21-29. [41] 吴小华,陈莉,魏甜甜,等.基于Self-Attention和Bi-LSTM的中文短文本情感分析[J].中文信息学报,2019,33(6):100-107. WU X H,CHEN L,WEI T T,et al.Sentiment analysis of Chinese short text based on self-attention and Bi-LSTM[J].Journal of Chinese Information Processing,2019,33(6):100-107. [42] 陈立潮,秦杰,陆望东,等.自注意力机制的短文本分类方法[J].计算机工程与设计,2022,43(3):728-734. CHEN L C,QIN J,LU W D,et al.Short text classification method based on self-attentinmechanism[J].Computer Engineering and Design,2022,43(3):728-734. [43] 石磊,王明宇,宋哲理,等.自注意力机制和BiGRU相结合的文本分类研究[J].小型微型计算机系统,2022,43(12):2541-2548. SHI L,WNAG P Y,SONG Z L,et al.Text classification research with the combination of self-attention mechanism and BiGRU[J].Journal of Chinese Computer Systems,2022,43(12):2541-2548. [44] LAI S,XU L,LIU K,et al.Recurrent convolutional neural networks for text classification[C]//29th AAAI Conference on Artificial Intelligence,2015. [45] XU J,CAI Y,WU X,et al.Incorporating context-relevant concepts into convolutional neural networks for short text classification[J].Neurocomputing,2020,386:42-53. [46] HAO M,XU B,LIANG J Y,et al.Chinese short text classification with mutual-attention convolutional neural networks[J].ACM Transactions on Asian and Low-Resource Language Information Processing,2020,19(5):1-13. [47] CHEN J,HU Y,LIU J,et al.Deep short text classification with knowledge powered attention[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence,2019:6252-6259. [48] SHE X,ZHANG D.Text classification based on hybrid CNN-LSTM hybrid model[C]//2018 11th International Symposium on Computational Intelligence and Design,2018,2:185-189. [49] 郑承宇,王新,王婷,等.基于Stacking-Bert集成学习的中文短文本分类算法[J].科学技术与工程,2022,22(10):4033-4038. ZHENG C Y,WANG X,WNAG T,et al.Chinese short text classification algorithm based on Stacking-Bert ensemble learning[J].Science Technology and Engineering,2022,22(10):4033-4038. [50] 李颖.基于BERT-DPCNN的垃圾弹幕识别改进及应用[D].上海:上海师范大学,2020. LI Y.Improvement and application of barrage recognition based on BERT-DPCNN[D].Shanghai:Shanghai Normal University,2020. [51] DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[C]//Advances in Neural Information Processing Systems,2016,29:3844-3852. [52] KIPF T N,WELLING M.Semi-supervised classification with graph convolutional networks[J].arXiv:1609.02907,2016. [53] VELI?KOVI? P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017. [54] 徐冰冰,岑科廷,黄俊杰,等.图卷积神经网络综述[J].计算机学报,2020,43(5):755-780. XU B B,CEN K Y,HUANG J J,et al.A survey on graph convolutional neural network[J].Chinese Journal of Computers,2020,43(5):755-780. [55] YAO L,MAO C,LUO Y.Graph convolutional networks for text classification[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence,2019:7370-7377. [56] YANG T,HU L,SHI C,et al.HGAT:heterogeneous graph attention networks for semi-supervised short text classification[J].ACM Transactions on Information Systems,2021,39(3):32. [57] LIU X,YOU X,ZHANG X,et al.Tensor graph convolutional networks for text classification[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence,2020:8409-8416. [58] LI R,CHEN H,FENG F,et al.Dual graph convolutional networks for aspect-based sentiment analysis[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1:Long Papers),2021:6319-6329. [59] LIN Y,MENG Y,SUN X,et al.BertGCN:transductive text classification by combining GCN and BERT[J].arXiv:2105. 05727,2021. [60] GAO W,HUANG H.A gating context-aware text classification model with BERT and graph convolutional networks[J].Journal of Intelligent & Fuzzy Systems,2021,40(3):4331-4343. [61] HUANG L,MA D,LI S,et al.Text level graph neural network for text classification[J].arXiv:1910.02356,2019. [62] YANG M,ZHAO W,CHEN L,et al.Investigating the transferring capability of capsule networks for text classification[J].Neural Networks,2019,118:247-261. [63] 王超凡,琚生根,孙界平,等.融入多尺度特征注意力的胶囊神经网络及其在文本分类中的应用[J].中文信息学报,2022,36(1):65-74. WANG C F,JU S G,SUN J P,et al.Capsule network with multi-scale feature attention for text classification[J].Journal of Chinese Information Processing,2022,36(1):65-74. [64] IYYER M,MANJUNATHA V,BOYD-GRABER J,et al.Deep unordered composition rivals syntactic methods for text classification[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Volume 1:Long Papers),2015:1681-1691. [65] JOULIN A,GRAVE E,BOJANOWSKI P,et al.Bag of tricks for efficient text classification[J].arXiv:1607.01759,2016. [66] ZHANG X,ZHAO J,LECUN Y.Character-level convolutional networks for text classification[C]//Advances in Neural Information Processing Systems,2015,28:649-657. [67] LIU Z,ZHANG L,TU C,et al.Statistical and semantic analysis of rumors in Chinese social media[J].Scientia Sinica Informationis,2015,45(12):1536. [68] QIU X,GONG J,HUANG X.Overview of the NLPCC 2017 shared task:Chinese news headline categorization[C]//National CCF Conference on Natural Language Processing and Chinese Computing.Cham:Springer,2017:948-953. [69] PANG B,LEE L.Seeing stars:exploiting class relationships for sentiment categorization with respect to rating scales[J].arXiv:cs/0506075,2005. [70] LI X,ROTH D.Learning question classifiers[C]//19th International Conference on Computational Linguistics,2002. [71] SOCHER R,PERELYGIN A,WU J,et al.Recursive deep models for semantic compositionality over a sentiment treebank[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,2013:1631-1642. [72] WANG F,WANG Z,LI Z,et al.Concept-based short text classification and ranking[C]//Proceedings of the 23rd ACM International Conference on Information and Knowledge Management,2014:1069-1078. [73] PHAN X H,NGUYEN L M,HORIGUCHI S.Learning to classify short and sparse text & web with hidden topics from large-scale data collections[C]//Proceedings of the 17th International Conference on World Wide Web,2008:91-100. [74] PANG B,LEE L.A sentimental education:sentiment analysis using subjectivity summarization based on minimum cuts[J].arXiv:cs/0409058,2004. [75] MAAS A,DALY R E,PHAM P T,et al.Learning word vectors for sentiment analysis[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies,2011:142-150. [76] WU C Y,DIAO Q,QIU M,et al.Jointly modeling aspects,ratings and sentiments for movie recommendation[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2014:193-202. |
[1] | BAI Shaojin, BAI Jing, SI Qinglong, JI Hui, YUAN Tao. Deep Ensemble Learning for Diversified 3D Model Classification [J]. Computer Engineering and Applications, 2023, 59(5): 222-231. |
[2] | ZHANG Jiayu, GUO Mei, ZHANG Yongliang, LI Mei, GENG Nan, GENG Yaojun. Research on Construction of Fine-Grained Knowledge Graph of Apple Diseases and Pests [J]. Computer Engineering and Applications, 2023, 59(5): 270-280. |
[3] | SUN Shukui, FAN Jing, LI Zhanwen, QU Jinshuai, LU Peidong. Survey of Artificial Intelligence in COVID-19 Pandemic [J]. Computer Engineering and Applications, 2023, 59(5): 28-39. |
[4] | XIAO Yang, ZHOU Jun. Overview of Image Edge Detection [J]. Computer Engineering and Applications, 2023, 59(5): 40-54. |
[5] | YE Wei, TAO Yongjun, CHEN Xicheng, WU Yazhou. Deep Ensemble Evolutionary Multi-Classification Method for Predicting Prognosis of Stroke [J]. Computer Engineering and Applications, 2023, 59(5): 95-105. |
[6] | YANG Chunxia, MA Wenwen, CHEN Qigang, GUI Qiang. Multi-Label Text Classification Model Combining CNN-SAM and GAT [J]. Computer Engineering and Applications, 2023, 59(5): 106-114. |
[7] | CHEN Qian, HAN Lin, WANG Suge, GUO Xin. Multi-Label Classification of Options Based on Seq2seq Model of Hybrid Attention [J]. Computer Engineering and Applications, 2023, 59(4): 104-111. |
[8] | YANG Kunrong, XIONG Yu, ZHANG Jian, CHU Wen. Research on MOOC Dropout Prediction Strategy for Long- and Short-Term Mixed Data [J]. Computer Engineering and Applications, 2023, 59(4): 130-138. |
[9] | LI Ling, GUO Guangsong. Hybrid Many-Objective Evolutionary Optimization Combined with Indexs Decomposition [J]. Computer Engineering and Applications, 2023, 59(4): 165-174. |
[10] | HU Xinjue, FU Zhangjie. Hiding Two Images with High Visual Quality [J]. Computer Engineering and Applications, 2023, 59(4): 235-242. |
[11] | ZHANG Han, ZHENG Weihao, DOU Zhicheng, WEN Jirong. Integrating Multi-Layer Structure Information of Law for Legal Judgement Prediction [J]. Computer Engineering and Applications, 2023, 59(3): 253-263. |
[12] | YANG Hanyu, ZHAO Xiaoyong, WANG Lei. Review of Data Normalization Methods [J]. Computer Engineering and Applications, 2023, 59(3): 13-22. |
[13] | CHEN Xiaoting, LI Shi. Survey on Emotion Recognition in Conversation [J]. Computer Engineering and Applications, 2023, 59(3): 33-48. |
[14] | DU Yuzheng, CAO Hui, NIE Yongqi, WEI Dejian, FENG Yanyan. Application of Deep Learning in Classification and Diagnosis of Alzheimer's Disease [J]. Computer Engineering and Applications, 2023, 59(3): 49-65. |
[15] | LIN Honghui, LIU Jianhua, ZHENG Zhixiong, HU Renyuan, LUO Yixuan. Multi-Task Network for Joint Dialog Act Recognition and Sentiment Classification [J]. Computer Engineering and Applications, 2023, 59(3): 104-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||