[1] FROME A,CORRADO G,SHLENS J,et al.Devise:A deep visual-semantic embedding model[C]//Proceedings of Advances in Neural Information Processing Systems,2013:2121-2129.
[2] AKATA Z,PERRONNIN F,HARCHAOUI Z,et al.Label-embedding for image classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,38(7):1425-1438.
[3] AKATA Z,REED S,WALTER D,et al.Evaluation of output embeddings for fine-grained image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:2927-2936
[4] ROMERA-PAREDES B,TORR P.An embarrassingly simple approach to zero-shot learning[C]//Proceedings of the International Conference on Machine Learning,2015:2152-2161.
[5] XIAN Y,AKATA Z,SHARMA G,et al.Latent embeddings for zero-shot classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:69-77.
[6] CHANGPINYO S,CHAO W L,GONG B,et al.Synthesized classifiers for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:5327-5336.
[7] KODIROV E,XIANG T,GONG S.Semantic autoencoder for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:3174-3183.
[8] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Proceedings of Advances in Neural Information Processing Systems,2014:2672-2680.
[9] KINGMA D P,WELLING M.Auto-encoding variational Bayes[J].arXiv:1312.6114,2013.
[10] XIAN Y,LORENZ T,SCHIELE B,et al.Feature generating networks for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:5542-5551.
[11] MISHRA A,KRISHNA REDDY S,MITTAL A,et al.A generative model for zero shot learning using conditional variational autoencoders[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2018:2188-2196.
[12] SCHONFELD E,EBRAHIMI S,SINHA S,et al.Generalized zero-and few-shot learning via aligned variational autoencoders[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:8247-8255.
[13] VERMA V K,ARORA G,MISHRA A,et al.Generalized zero-shot learning via synthesized examples[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:4281-4289.
[14] ZHU Y,XIE J,LIU B,et al.Learning feature-to-feature translator by alternating back-propagation for generative zero-shot learning[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:9844-9854.
[15] FU Y,HOSPEDALES T M,XIANG T,et al.Transductive multi-view zero-shot learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(11):2332-2345.
[16] LAMPERT C H,NICKISCH H,HARMELING S.Attribute-based classification for zero-shot visual object categorization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,36(3):453-465.
[17] SHIGETO Y,SUZUKI I,HARA K,et al.Ridge regression,hubness,and zero-shot learning[C]//Joint European conference on Machine Learning and Knowledge Discovery in Databases,2015:135-151.
[18] GULRAJANI I,AHMED F,ARJOVSKY M,et al.Improved training of wasserstein gans[J].arXiv:1704.00028,2017.
[19] WANG X,YE Y,GUPTA A.Zero-shot recognition via semantic embeddings and knowledge graphs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:6857-6866.
[20] KAMPFFMEYER M,CHEN Y,LIANG X,et al.Rethinking knowledge graph propagation for zero-shot learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:11487-11496.
[21] LIU L,ZHOU T,LONG G,et al.Attribute propagation network for graph zero-shot learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020:4868-4875.
[22] KIPF T N,WELLING M.Semi-supervised classification with graph convolutional networks[J].arXiv:1609.02907,2016.
[23] HIGGINS I,MATTHEY L,PAL A,et al.Beta?VAE:Learning basic visual concepts with a constrained variational framework[C]//Proceedings of ICLR 2017 Conference,2017.
[24] CHAO W L,CHANGPINYO S,GONG B,et al.An empirical study and analysis of generalized zero-shot learning for object recognition in the wild[C]//Proceedings of the European Conference on Computer Vision,2016:52-68.
[25] KIPF T N,WELLING M.Variational graph auto-encoders[J].arXiv:1611.07308,2016.
[26] KINGMA D P,BA J.ADAM:A method for stochastic optimization[J].arXiv:1412.6980,2014.
[27] XIAN Y,SCHIELE B,AKATA Z.Zero-shot learning-the good,the bad and the ugly[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4582-4591.