Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (16): 1-15.DOI: 10.3778/j.issn.1002-8331.2212-0068
• Research Hotspots and Reviews • Previous Articles Next Articles
YANG Zhuo, XIE Yaqi, CHEN Yi, ZHAN Yinwei
Online:
2023-08-15
Published:
2023-08-15
杨卓,谢雅淇,陈谊,战荫伟
YANG Zhuo, XIE Yaqi, CHEN Yi, ZHAN Yinwei. Review of Latest Research for Layout Methods of Graph Visualization[J]. Computer Engineering and Applications, 2023, 59(16): 1-15.
杨卓, 谢雅淇, 陈谊, 战荫伟. 图可视化布局方法最新研究进展综述[J]. 计算机工程与应用, 2023, 59(16): 1-15.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2212-0068
[1] SAKR S,BONIFATI A,VOIGT H,et al.The future is big graphs:a community view on graph processing systems[J].Communications of the ACM,2021,64(9):62-71. [2] MAHADEVI S,KAMATH S S,SHETTY D P.Study of novel COVID-19 data using graph energy centrality:a soft computing approach[J].International Journal of Medical Engineering and Informatics,2022,14(3):282-294. [3] ZHANG T,LI J.Understanding and predicting the spatio‐temporal spread of COVID‐19 via integrating diffusive graph embedding and compartmental models[J].Transactions in GIS,2021,25(6):3025-3047. [4] 马昱欣,曹震东,陈为.可视化驱动的交互式数据挖掘方法综述[J].计算机辅助设计与图形学学报,2016,28(1):1-8. MA Y,CAO Z D,CHEN W.A survey of visualization-driven interactive data mining approaches[J].Journal of Computer-Aided Design & Computer Graphics,2016,28(1):1-8. [5] 陈谊,张梦录,万玉钗.图的表示与可视化方法综述[J].系统仿真学报,2020,32(7):1232-1243. CHEN Y,ZHANG M L,WAN Y C.A survey on graph representation and visualization techniques[J].Journal of System Simulation,2020,32(7):1232-1243. [6] VON LANDESBERGER T,KUIJPER A,SCHRECK T,et al.Visual analysis of large graphs:state‐of‐the‐art and future research challenges[J].Computer Graphics Forum,2011,30(6):1719-1749. [7] 孙扬,蒋远翔,赵翔,等.网络可视化研究综述[J].计算机科学,2010,37(2):12-18. SUN Y,JIANG Y X,ZHAO X,et al.Survey on the research of network visualization[J].Computer Science,2010,37(2):12-18. [8] POHL M,SCHMITT M,DIEHL S.Comparing the readability of graph layouts using eyetracking and task-oriented analysis[C]//Proceedings of the International Symposium on Computational Aesthetics in Graphics,Visualization,and Imaging,Victoria,2009:49-56. [9] TUTTE W T.How to draw a graph[J].Proceedings of the London Mathematical Society,1963,3(1):743-767. [10] EADES P.A heuristic for graph drawing[J].Congressus Numerantium,1984,42:149-160. [11] KAMADA T,KAWAI S.An algorithm for drawing general undirected graphs[J].Information Processing Letters,1989,31(1):7-15. [12] FRUCHTERMAN T M J,REINGOLD E M.Graph drawing by force‐directed placement[J].Software:Practice and Experience,1991,21(11):1129-1164. [13] DAVIDSON R,HAREL D.Drawing graphs nicely using simulated annealing[J].ACM Transactions on Graphics,1996,15(4):301-331. [14] NOACK A.An energy model for visual graph clustering[C]//Proceedings of the 11th International Symposium on Graph Drawing,Perugia,2003:425-436. [15] JACOMY M,VENTURINI T,HEYMANN S,et al.Force- Atlas2,a continuous graph layout algorithm for handy network visualization designed for the Gephi software[J].PLoS ONE,2014,9(6):e98679. [16] HADANY R,HAREL D.A multi-scale algorithm for drawing graphs nicely[J].Discrete Applied Mathematics,2001,113(1):3-21. [17] WALSHAW C.A multilevel algorithm for force-directed graph drawing[C]//Proceedings of the 8th International Symposium on Graph Drawing,Heidelberg,2000:171-182. [18] HACHUL S,JüNGER M.Large-graph layout algorithms at work:an experimental study[J].Journal of Graph Algorithms and Applications,2007,11(21):345-369. [19] XUE M,WANG Z,ZHONG F,et al.Taurus:towards a unified force representation and universal solver for graph layout[J].IEEE Transactions on Visualization and Computer Graphics,2023,29(1):886-895. [20] RAHMAN M,SUJON M H,AZAD A.Scalable force-directed graph representation learning and visualization[J].Knowledge and Information Systems,2022,64(1):207-233. [21] LIPP F,WOLFF A,ZINK J.Faster force-directed graph drawing with the well-separated pair decomposition[C]//Proceedings of the 23rd International Symposium on Graph Drawing and Network Visualization,Los Angeles,2015:52-59. [22] 张野,王松,吴亚东.FMR:基于FR的快速多层次算法[J].图学学报,2019,40(1):78-86. ZHANG Y,WANG S,WU Y D.FMR:a fast multilevel algorithm based on FR[J].Journal of Graphics,2019,40(1):78-86. [23] HU Y.Efficient,high-quality force-directed graph drawing[J].Mathematica Journal,2005,10(1):37-71. [24] 汤颖,盛风帆,秦绪佳.基于改进力导引图布局的层级视觉抽象方法[J].计算机辅助设计与图形学学报,2017,29(4):641-650. TANG Y,SHENG F F,QIN X J.A hierarchical visual abstraction method based on the improved force-directed graph layout[J].Journal of Computer-Aided Design & Computer Graphics,2017,29(4):641-650. [25] ARLEO A,DIDIMO W,LIOTTA G,et al.A distributed multilevel force-directed algorithm[J].IEEE Transactions on Parallel and Distributed Systems,2019,30(4):754-765. [26] MARTIN S,BROWN W M,KLAVANS R,et al.OpenOrd:an open-source toolbox for large graph layout[C]//Visualization and Data Analysis 2011,San Francisco,2011,7868:45-55. [27] RAHMAN M K,SUJON M H,AZAD A.BatchLayout:a batch-parallel force-directed graph layout algorithm in shared memory[C]//2020 IEEE Pacific Visualization Symposium,Tianjin,2020:16-25. [28] BRINKMANN G G,RIETVELD K F D,TAKES F W.Exploiting GPUs for fast force-directed visualization of large-scale networks[C]//Proceedings of the 46th International Conference on Parallel Processing,Bristol,2017:382-391. [29] HAN D,PAN J,ZHAO X,et al.NetV.js:a web-based library for high-efficiency visualization of large-scale graphs and networks[J].Visual Informatics,2021,5(1):61-66. [30] BOSTOCK M,OGIEVETSKY V,HEER J.D3 data-driven documents[J].IEEE Transactions on Visualization and Computer Graphics,2011,17(12):2301-2309. [31] FRANZ M,LOPES C T,HUCK G,et al.Cytoscape.js:a graph theory library for visualisation and analysis[J].Bioinformatics,2016,32(2):309-311. [32] COENE J P.sigmajs:an R htmlwidget interface to the sigma.js visualization library[J].Journal of Open Source Software,2018,3(28):814. [33] REN D,LEE B,H?LLERER T.Stardust:accessible and transparent GPU support for information visualization rendering[J].Computer Graphics Forum,2017,36(3):179-188. [34] ZELLMANN S,WEIER M,WALD I.Accelerating force-directed graph drawing with RT cores[C]//Proceedings of the 2020 IEEE Visualization Conference,2020:96-100. [35] LI R,SONG S,WU Q,et al.Accelerating force-directed graph layout with processing-in-memory architecture[C]//Proceedings of the 2020 IEEE 27th International Conference on High Performance Computing,Data,and Analytics,Pune,2020:271-282. [36] HOLTEN D,VAN WIJK J J.A user study on visualizing directed edges in graphs[C]//Proceedings of the 2019 SIGCHI Conference on Human Factors in Computing Systems,Boston,2009:2299-2308. [37] HUANG W.Establishing aesthetics based on human graph reading behavior:two eye tracking studies[J].Personal & Ubiquitous Computing,2013,17(1):93-105. [38] PURCHASE H C.Metrics for graph drawing aesthetics[J].Journal of Visual Languages & Computing,2002,13(5):501-516. [39] AHMED R,DE LUCA F,DEVKOTA S,et al.Graph drawing via gradient descent,GD2[C]//Proceedings of the 28th International Symposium on Graph Drawing and Network Visualization,Vancouver,2020:3-17. [40] AHMED R,DE LUCA F,DEVKOTA S,et al.Multicriteria scalable graph drawing via stochastic gradient descent,SGD2[J].IEEE Transactions on Visualization and Computer Graphics,2022,28(6):2388-2399. [41] SARKAR M,BROWN M H.Graphical fisheye views of graphs[C]//Proceedings of the 1992 SIGCHI Conference on Human Factors in Computing Systems,Monterey,1992:83-91. [42] MUNZNER T.Exploring large graphs in 3D hyperbolic space[J].IEEE Computer Graphics and Applications,1998,18(4):18-23. [43] DU F,CAO N,LIN Y R,et al.isphere:focus+context sphere visualization for interactive large graph exploration[C]//Proceedings of the 2017 SIGCHI Conference on Human Factors in Computing Systems,Denver,2017:2916-2927. [44] WANG Y,WANG Y,ZHANG H,et al.Structure-aware fisheye views for efficient large graph exploration[J].IEEE Transactions on Visualization and Computer Graphics,2018,25(1):566-575. [45] BIEDL T C,MADDEN B P,TOLLIS I G.The three-phase method:a unified approach to orthogonal graph drawing[J].International Journal of Computational Geometry & Applications,2000,10(6):553-580. [46] VAN GOETHEM A,VERBEEK K.Optimal morphs of planar orthogonal drawings[C]//Proceedings of the 34th International Symposium on Computational Geometry,Budapest,2018. [47] VAN GOETHEM A,SPECKMANN B,VERBEEK K.Optimal morphs of planar orthogonal drawings II[C]//Proceedings of the 27th International Symposium on Graph Drawing and Network Visualization,Prague,2019:33-45. [48] ZINK J,WALTER J,BAUMEISTER J,et al.Layered drawing of undirected graphs with generalized port constraints[J].Computational Geometry,2022,105:101886. [49] BARTH L,NIEDERMANN B,RUTTER I,et al.A topology-shape-metrics framework for ortho-radial graph drawing[J].arXiv:2106.05734,2021. [50] HOFFSWELL J,BORNING A,HEER J.SetCoLa:high‐level constraints for graph layout[J].Computer Graphics Forum,2018,37(3):537-548. [51] YU J,HU Y,YUAN X.UNICON:a uniform constraint based graph layout framework[C]//Proceedings of the 2022 IEEE 15th Pacific Visualization Symposium,Tsukuba,2022:61-70. [52] PAN J,CHEN W,ZHAO X,et al.Exemplar-based layout fine-tuning for node-link diagrams[J].IEEE Transactions on Visualization and Computer Graphics,2020,27(2):1655-1665. [53] HU P,LAU W C.A survey and taxonomy of graph sampling[J].arXiv:1308.5865,2013. [54] NGUYEN Q H,HONG S H,EADES P,et al.Proxy graph:visual quality metrics of big graph sampling[J].IEEE Transactions on Visualization and Computer Graphics,2017,23(6):1600-1611. [55] MEIDIANA A,HONG S H,TORKEL M,et al.Sublinear time force computation for big complex network visualization[J].Computer Graphics Forum,2020,39(3):579-591. [56] ZHAO Y,JIANG H,QIN Y,et al.Preserving minority structures in graph sampling[J].IEEE Transactions on Visualization and Computer Graphics,2020,27(2):1698-1708. [57] ZHOU Z,SHI C,SHEN X,et al.Context-aware sampling of large networks via graph representation learning[J].IEEE Transactions on Visualization and Computer Graphics,2020,27(2):1709-1719. [58] BLONDEL V D,GUILLAUME J L,LAMBIOTTE R,et al.Fast unfolding of communities in large networks[J].Journal of Statistical Mechanics:Theory and Experiment,2008(10):P10008. [59] XU X,YURUK N,FENG Z,et al.Scan:a structural clustering algorithm for networks[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,San Jose,2007:824-833. [60] CHEN X,CAI D.Large scale spectral clustering with landmark-based representation[C]//Proceedings of the 25th AAAI Conference on Artificial Intelligence,San Francisco,2011:313-318. [61] IMRE M,TAO J,WANG Y,et al.Spectrum-preserving sparsification for visualization of big graphs[J].Computers & Graphics,2020,87:89-102. [62] HONG S H,EADES P,TORKEL M,et al.Multi-level graph drawing using infomap clustering[C]//Proceedings of the 27th International Symposium on Graph Drawing and Network Visualization,Prague,2019:139-146. [63] HONG S H,EADES P,TORKEL M,et al.Louvain-based multi-level graph drawing[C]//2020 IEEE Pacific Visualization Symposium,Tianjin,2021:151-155. [64] HUANG Z,WU J,ZHU W,et al.Visualizing complex networks by leveraging community structures[J].Physica A:Statistical Mechanics and Its Applications,2021,565:125506. [65] MEIDIANA A,HONG S H,EADES P,et al.A quality metric for visualization of clusters in graphs[C]//Proceedings of the 27th International Symposium on Graph Drawing and Network Visualization,Prague,2019:125-138. [66] DOS SANTOS VIEIRA R,DO NASCIMENTO H A D,DA SILVA W B.The application of machine learning to problems in graph drawing a literature review[C]//Proceedings of the 7th International Conference on Information,Process,and Knowledge Management,Lisbon,2015:112-118. [67] GOYAL P,FERRARA E.Graph embedding techniques,applications,and performance:a survey[J].Knowledge-Based Systems,2018,151:78-94. [68] VAN DER MAATEN L,HINTON G.Visualizing data using t-SNE[J].Journal of Machine Learning Research,2008,9(11):2579-2605. [69] TANG J,QU M,WANG M,et al.LINE:large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web,Florence,2015:1067-1077. [70] PEROZZI B,AL-RFOU R,SKIENA S.DeepWalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,New York,2014:701-710. [71] WANG D,CUI P,ZHU W.Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,San Francisco,2016:1225-1234. [72] CHEN Y,ZHANG Q,GUAN Z,et al.GEMvis:a visual analysis method for the comparison and refinement of graph embedding models[J].The Visual Computer,2022,38(9):3449-3462. [73] HAREL D,KOREN Y.Graph drawing by high-dimensional embedding[C]//Proceedings of the 10th International Symposium on Graph Drawing,Irvine,2002:207-219. [74] BRANDES U,PICH C.Eigensolver methods for progressive multidimensional scaling of large data[C]//Proceedings of the 14th International Symposium on Graph Drawing,Karlsruhe,2006:42-53. [75] YANG Z,PELTONEN J,KASKI S.Optimization equivalence of divergences improves neighbor embedding[C]//Proceedings of the 31st International Conference on Machine Learning,2014:460-468. [76] KRUIGER J F,RAUBER P E,MARTINS R M,et al.Graph layouts by t‐SNE[J].Computer Graphics Forum,2017,36(3):283-294. [77] ZHU M,CHEN W,HU Y,et al.DRgraph:an efficient graph layout algorithm for large-scale graphs by dimensionality reduction[J].IEEE Transactions on Visualization and Computer Graphics,2020,27(2):1666-1676. [78] MISHRA A,KIRMANI S,MMDDURI K.Fast spectral graph layout on multicore platforms[C]//Proceedings of the 49th International Conference on Parallel Processing,Edmonton,2020:1-11. [79] HEITER E,KANG B,DE BIE T,et al.Evaluating representation learning and graph layout methods for visualization[J].IEEE Computer Graphics and Applications,2022,42(3):19-28. [80] WANG Y,JIN Z,WANG Q,et al.DeepDrawing:a deep learning approach to graph drawing[J].IEEE Transactions on Visualization and Computer Graphics,2019,26(1):676-686. [81] KIPF T N,WELLING M.Semi-supervised classification with graph convolutional networks[J].arXiv:1609.02907,2016. [82] KWON O H,MA K L.A deep generative model for graph layout[J].IEEE Transactions on Visualization and Computer Graphics,2019,26(1):665-675. [83] GIOVANNANGELI L,LALANNE F,AUBER D,et al.Deep neural network for drawing networks,(DNN)2[C]//Proceedings of the 29th International Symposium on Graph Drawing and Network Visualization,Tübingen,2021:375-390. [84] WANG X,YEN K,HU Y,et al.DeepGD:a deep learning framework for graph drawing using GNN[J].IEEE Computer Graphics and Applications,2021,41(5):32-44. [85] WANG X,YEN K,HU Y,et al.SmartGD:a self-challenging generative adversarial network for graph drawing[J].arXiv:2206.06434,2022. [86] TIEZZI M,CIRAVEGNA G,GORI M.Graph neural networks for graph drawing[J].IEEE Transactions on Neural Networks and Learning Systems,2022.DOI:10.1109/TNNLS.2022.3184967. |
[1] | ZHANG Xu, YANG Xuezhi, LIU Xuenan, FANG Shuai. Non-Contact Atrial Fibrillation Detection Based on Video Pulse Features [J]. Computer Engineering and Applications, 2023, 59(8): 331-340. |
[2] | ZHOU Yurong, ZHANG Qiaoling, YU Guangzeng, XU Weiqiang. Review of Acoustic Signal-Based Industrial Equipment Fault Diagnosis [J]. Computer Engineering and Applications, 2023, 59(7): 51-63. |
[3] | XU Dongdong, CAI Xiaohong, LIU Jing, CAO Hui. Review of Depression Detection Using Social Media Text Data [J]. Computer Engineering and Applications, 2023, 59(4): 54-63. |
[4] | PEI Wenbin, WANG Hailong, LIU Lin, PEI Dongmei. Review of Musical Instrument Recognition in Music Information Retrieval [J]. Computer Engineering and Applications, 2023, 59(2): 34-47. |
[5] | LU Huimin, XUE Han, WANG Yilong, WANG Guizeng, SANG Pengcheng. Review of Application of Machine Learning in Radiomics Analysis [J]. Computer Engineering and Applications, 2023, 59(17): 22-34. |
[6] | LIU Mingchuan, ZHANG Kuixing, JIANG Mei, ZHANG Xiaoli, LI Liping. Advances in Classification of Lung Adenocarcinoma Subtypes [J]. Computer Engineering and Applications, 2023, 59(17): 67-79. |
[7] | LI Xinhui, QIAN Yurong, YUE Haitao, HU Yue, CHEN Jiaying, LENG Hongyong, MA Mengnan. Survey of Bioinformatics-Based Protein Function Prediction [J]. Computer Engineering and Applications, 2023, 59(16): 50-62. |
[8] | LIU Dandan, HAN Yi, LIU Xiangyu, XIE Rongrong, WANG Jingxiang, DU Yanhui. Smart Home Recognition Based on WiFi Data Frame Features [J]. Computer Engineering and Applications, 2023, 59(15): 274-280. |
[9] | ZHAO Yanyu, ZHAO Xiaoyong, WANG Lei, WANG Ningning. Review of Explainable Artificial Intelligence [J]. Computer Engineering and Applications, 2023, 59(14): 1-14. |
[10] | MENG Chuang, WANG Hui, LIN Hao, LI Kecen, WANG Xinpeng. Review of Research on Road Traffic Flow Data Prediciton Methods [J]. Computer Engineering and Applications, 2023, 59(14): 51-61. |
[11] | SHI Chaojun, LI Xingkuan, ZHANG Ke, HAN Leile, YANG Shifang. Research Progress of Ground Cloud Image Segmentation Method [J]. Computer Engineering and Applications, 2023, 59(13): 1-16. |
[12] | WANG Yu, WANG Xin, ZHANG Shujuan, ZHENG Guoqiang, ZHAO Long, ZHENG Gaofeng. Research on Efficient Knowledge Fusion Method for Heterogeneous Big Data Environments [J]. Computer Engineering and Applications, 2022, 58(6): 142-148. |
[13] | LU Bingjie, LI Weizhuo, NA Chongning, NIU Zuoyao, CHEN Kui. Survey of Auto Insurance Fraud Detection with Machine Learning Models [J]. Computer Engineering and Applications, 2022, 58(5): 34-49. |
[14] | ZHAO Zhenzhen, DONG Yanru, CAO Hui, CAO Bin. Research Status of Elderly Fall Detection Algorithms [J]. Computer Engineering and Applications, 2022, 58(5): 50-65. |
[15] | HUANG Yanqian, CHI Dongxiang, XU Lingling. Research on Few-Shot Learning Based on Embedding Learning [J]. Computer Engineering and Applications, 2022, 58(3): 34-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||