Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (16): 50-62.DOI: 10.3778/j.issn.1002-8331.2212-0167
• Research Hotspots and Reviews • Previous Articles Next Articles
LI Xinhui, QIAN Yurong, YUE Haitao, HU Yue, CHEN Jiaying, LENG Hongyong, MA Mengnan
Online:
2023-08-15
Published:
2023-08-15
李昕晖,钱育蓉,岳海涛,胡月,陈嘉颖,冷洪勇,马梦楠
LI Xinhui, QIAN Yurong, YUE Haitao, HU Yue, CHEN Jiaying, LENG Hongyong, MA Mengnan. Survey of Bioinformatics-Based Protein Function Prediction[J]. Computer Engineering and Applications, 2023, 59(16): 50-62.
李昕晖, 钱育蓉, 岳海涛, 胡月, 陈嘉颖, 冷洪勇, 马梦楠. 基于生物信息学的蛋白质功能预测研究综述[J]. 计算机工程与应用, 2023, 59(16): 50-62.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2212-0167
[1] BARABáSI A L,GULBAHCE N,LOSCALZO J.Network medicine:a network-based approach to human disease[J].Nature Reviews Genetics,2011,12(1):56-68. [2] XUAN P,SUN C,ZHANG T,et al.Gradient boosting decision tree-based method for predicting interactions between target genes and drugs[J].Frontiers in Genetics,2019,10:459. [3] KISSA M,TSATSARONIS G,SCHROEDER M.Prediction of drug gene associations via ontological profile similarity with application to drug repositioning[J].Methods,2015,74(1):71-82. [4] ZENG X,ZHANG X,ZOU Q.Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks[J].Brief Bioinform,2016,17(2):193-203. [5] ZHENG Q,WANG X J.GOEAST:a web-based software toolkit for Gene Ontology enrichment analysis[J].Nucleic Acids Research,2008,36(Web Server):358-363. [6] MI H,MURUGANUJAN A,CASAGRANDE J T,et al.Large-scale gene function analysis with the PANTHER classification system[J].Nature Protocols,2013,8:1551-1566. [7] RADIVOJAC P,CLARK W T,ORON T R,et al.A large-scale evaluation of computational protein function prediction[J].Nature Methods,2013,10(3):221-227. [8] ZHOU N,JIANG Y,BERGQUIST T R,et al.The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens[J].Genome Biology,2019,20:244. [9] SHEHU A,BARBARá D,MOLLOY K.A survey of computational methods for protein function prediction[M]//Big data analytics in genomics.Cham:Springer,2016:225-298. [10] JIANG Y,ORON T R,CLARK W T,et al.An expanded evaluation of protein function prediction methods shows an improvement in accuracy[J].Genome Biology,2016,17:184. [11] ASHBURNER M,BALL C A,BLAKE J A,et al.Gene Ontology:tool for the unification of biology[J].Nature Genetics,2000,25(1):25-29. [12] ACENCIO M L,KUIPER M.The Gene Ontology resource:enriching a GOld mine[J].Nucleic Acids Research,2021,49(D1):325-334. [13] APWEILER R,BAIROCH A,WU C H,et al.UniProt:the universal protein knowledgebase in 2021[J].Nucleic Acids Research,2021,49(D1):480-489. [14] BLUM M,CHANG H Y,CHUGURANSKY S,et al.The InterPro protein families and domains database:20 years on[J].Nucleic Acids Research,2021,49(D1):344-354. [15] CUNNINGHAM F,ALLEN J E,ALLEN J,et al.Ensembl 2022[J].Nucleic Acids Research,2022,50(D1):988-995. [16] NEEDLEMAN S B,WUNSCH C D.A general method applicable to the search for similarities in the amino acid sequence of two proteins[J].Journal of Molecular Biology,1970,48(3):443-453. [17] BERMAN H M,WESTBROOK J,FENG Z,et al.The protein data bank[J].Nucleic Acids Research,2000,28(1):235-242. [18] BURLEY S K,BHIKADIYA C,BI C,et al.RCSB protein data bank:powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology,biomedicine,biotechnology,bioengineering and energy sciences[J].Nucleic Acids Research,2021,49(D1):437-451. [19] DHANUKA R,TRIPATHI A,SINGH J P.A semi-supervised autoencoder-based approach for protein function prediction[J].IEEE Journal of Biomedical and Health Informatics,2022,26(10):4957-4965. [20] SARA S T,HASAN M M,AHMAD A,et al.Convolutional neural networks with image representation of amino acid sequences for protein function prediction[J].Computational Biology and Chemistry,2021,92:107494. [21] ELHAJ-ABDOU M E M,EL-DIB H,EL-HELW A,et al.Deep_CNN_LSTM_GO:protein function prediction from amino-acid sequences[J].Computational Biology and Chemistry,2021,95:107584. [22] DU Z,HE Y,LI J,et al.DeepAdd:protein function prediction from k-mer embedding and additional features[J].Computational Biology and Chemistry,2020,89:107379. [23] MOSTAFA F A,AFIFY Y M,ISMAIL R M,et al.Deep learning model for protein disease classification[J].Current Bioinformatics,2022,17(3):245-253. [24] LI M,SHI W,ZHANG F,et al.A deep learning framework for predicting protein functions with co-occurrence of GO terms[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2023,20(2):833-842. [25] HAKALA K,KAEWPHAN S,BJORNE J,et al.Neural network and random forest models in protein function prediction[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2022,19(3):1772-1781. [26] HU G,KATUWAWALA A,WANG K,et al.flDPnn:accurate intrinsic disorder prediction with putative propensities of disorder functions[J].Nature Communications,2021,12:4438. [27] LAI B,XU J.Accurate protein function prediction via graph attention networks with predicted structure information[J].Briefings in Bioinformatics,2022,23:bbab502. [28] TANG H,WANG Y,TANG S,et al.A randomized clustering forest approach for efficient prediction of protein functions[J].IEEE Access,2019,7:12360-12372. [29] WU J S,HUANG S J,ZHOU Z H.Genome-wide protein function prediction through multi-instance multi-label learning[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2014,11(5):891-902. [30] LIU Y W,HSU T W,CHANG C Y,et al.GODoc:high-throughput protein function prediction using novel k-nearest-neighbor and voting algorithms[J].BMC Bioinformatics,2020,21(S6):276. [31] YU H,LUO X.IPPF-FE:an integrated peptide and protein function prediction framework based on fused features and ensemble models[J].Briefings in Bioinformatics,2022,24:bbac476. [32] KABIR A,SHEHU A.GOProFormer:a multi-modal transformer method for gene ontology protein function prediction[J].Biomolecules,2022,12(11):1709. [33] XIA W,ZHENG L,FANG J,et al.PFmulDL:a novel strategy enabling multi-class and multi-label protein function annotation by integrating diverse deep learning methods[J].Computers in Biology and Medicine,2022,145:105465. [34] 陈彦明.基于MIMLNN的玉米蛋白质功能预测[J].现代计算机,2018(25):27-30. CHEN Y M.Prediction of maize protein function based on MIMLNN[J].Modern Computer,2018(25):27-30. [35] LIU J,TANG X,GUAN X.Grain protein function prediction based on self-attention mechanism and bidirectional LSTM[J].Briefings in Bioinformatics,2022,24:bbac493. [36] FAN R,SUO B,DING Y.Identification of vesicle transport proteins via hypergraph regularized k-local hyperplane distance nearest neighbour model[J].Frontiers in Genetics,2022,13:960388. [37] GONG Y,DONG B,ZHANG Z,et al.VTP-Identifier:vesicular transport proteins identification based on PSSM profiles and XGBoost[J].Frontiers in Genetics,2021,12:808856. [38] LE N Q K,YAPP E K Y,NAGASUNDARAM N,et al.Computational identification of vesicular transport proteins from sequences using deep gated recurrent units architecture[J].Computational and Structural Biotechnology Journal,2019,17:1245-1254. [39] SEYYEDSALEHI S F,SOLEYMANI M,RABIEE H R,et al.PFP-WGAN:protein function prediction by discovering gene ontology term correlations with generative adversarial networks[J].PLoS One,2021,16(2):e0244430. [40] WAN C,JONES D T.Protein function prediction is improved by creating synthetic feature samples with generative adversarial networks[J].Nature Machine Intelligence,2020,2(9):540-550. [41] KULMANOV M,HOEHNDORF R.DeepGOZero:improving protein function prediction from sequence and zero-shot learning based on ontology axioms[J].Bioinformatics,2022,38(S1):238-245. [42] VAN DEN BENT I,MAKRODIMITRIS S,REINDERS M.The power of universal contextualized protein embeddings in cross-species protein function prediction[J].Evolutionary Bioinformatics,2021.DOI:10.1177/11769343211062608. [43] GE R,FENG G,WANG P,et al.ProFPred:a two-step protein function prediction model based on sequence and evolutionary information[C]//Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine,2021:1372-1376. [44] HONG J,LUO Y,ZHANG Y,et al.Protein functional annotation of simultaneously improved stability,accuracy and false discovery rate achieved by a sequence-based deep learning[J].Brief Bioinform,2020,21(4):1437-1447. [45] JOHNSON M,ZARETSKAYA I,RAYTSELIS Y,et al.NCBI BLAST:a better web interface[J].Nucleic Acids Research,2008,36(Web Server):5-9. [46] PATHAK A,ROY T,EDUBILLI A,et al.Mask blast with a new chemical logic of amino acids for improved protein function prediction[J].Proteins,2021,89(1):922-924. [47] BAROT M,GLIGORIJEVIC V,CHO K,et al.NetQuilt:deep multispecies network-based protein function prediction using homology-informed network similarity[J].Bioinformatics,2021,37(16):2414-2422. [48] REIJNDERS M.Wei2GO:weighted sequence similarity-based protein function prediction[J].PeerJ,2022,10:e12931. [49] MOHAMED S K.Predicting tissue-specific protein functions using multi-part tensor decomposition[J].Information Sciences,2020,508:343-357. [50] KULMANOV M,HOEHNDORF R.DeepGOPlus:improved protein function prediction from sequence[J].Bioinformatics,2020,36(2):422-429. [51] SURATANEE A,PLAIMAS K.Hybrid deep learning based on a heterogeneous network profile for functional annotations of plasmodium falciparum genes[J].International Journal of Molecular Sciences,2021,22(18):10019. [52] ZHAO Y,WANG J,GUO M,et al.Cross-species protein function prediction with asynchronous-random walk[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2021,18(4):1439-1450. [53] JAIN A,KIHARA D.Phylo-PFP:improved automated protein function prediction using phylogenetic distance of distantly related sequences[J].Bioinformatics,2019,35(5):753-759. [54] KABIR M N,WONG L.EnsembleFam:towards more accurate protein family prediction in the twilight zone[J].BMC Bioinformatics,2022,23(1):90. [55] RANJAN A,TIWARI A,DEEPAK A.A sub-sequence based approach to protein function prediction via multi-attention based multi-aspect network[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2021,20(1):94-105. [56] PIOVESAN D,GIOLLO M,LEONARDI E,et al.INGA:protein function prediction combining interaction networks,domain assignments and sequence similarity[J].Nucleic Acids Research,2015,43(W1):134-140. [57] PIOVESAN D,TOSATTO S C E.INGA 2.0:improving protein function prediction for the dark proteome[J].Nucleic Acids Research,2019,47(W1):373-378. [58] JUMPER J,EVANS R,PRITZEL A,et al.Highly accurate protein structure prediction with AlphaFold[J].Nature,2021,596(7873):583-589. [59] KONDO H X,IIZUKA H,MASUMOTO G,et al.Prediction of protein function from tertiary structure of the active site in heme proteins by convolutional neural network[J].Biomolecules,2023,13(1):137. [60] GAO R,WANG M,ZHOU J,et al.Prediction of enzyme function based on three parallel deep CNN and amino acid mutation[J].International Journal of Molecular Sciences,2019,20(11):2845. [61] GIRI S J,DUTTA P,HALANI P,et al.MultiPredGO:deep multi-modal protein function prediction by amalgamating protein structure,sequence,and interaction information[J].IEEE Journal of Biomedical and Health Informatics,2020,25(5):1832-1838. [62] LIANG M,NIE J.Prediction of enzyme function based on a structure relation network[J].IEEE Access,2020,8:132360-132366. [63] DERRY A,ALTMAN R B.COLLAPSE:a representation learning framework for identification and characterization of protein structural sites[J].Protein Science,2023,32(2):e4541. [64] KAGAYA Y,FLANNERY S T,JAIN A,et al.ContactPFP:protein function prediction using predicted contact information[J].Front Bioinform,2022,2(1):896295. [65] GLIGORIJEVI? V,RENFREW P D,KOSCIOLEK T,et al.Structure-based protein function prediction using graph convolutional networks[J].Nature Communications,2021,12:3168. [66] MA W,ZHANG S,LI Z,et al.Enhancing protein function prediction performance by utilizing AlphaFold-predicted protein structures[J].Journal of Chemical Information and Modeling,2022,62(17):4008-4017. [67] QIU X Y,WU H,SHAO J.TALE-cmap:protein function prediction based on a TALE-based architecture and the structure information from contact map[J].Computers in Biology and Medicine,2022,149:105938. [68] JULIAN A T,DOS SANTOS A C M,POMBERT J F.3DFI:a pipeline to infer protein function using structural homology[J].Bioinformatics Advances,2021,1(1):vbab030. [69] LI S,CAI C,GONG J,et al.A fast protein binding site comparison algorithm for proteome‐wide protein function prediction and drug repurposing[J].Proteins:Structure,Function,and Bioinformatics,2021,89(11):1541-1556. [70] HU S,ZHANG Z,XIONG H,et al.A tensor-based bi-random walks model for protein function prediction[J].BMC Bioinformatics,2022,23(1):199. [71] ZHAO B,ZHANG Z,JIANG M,et al.NPF:network propagation for protein function prediction[J].BMC Bioinformatics,2020,21(1):355. [72] 李鹏,闵慧,罗爱静,等.改进的动态PPI网络构建与蛋白质功能预测算法[J].计算机工程,2020,46(12):52-59. LI P,MIN H,LUO A J,et al.Improved dynamic PPI network construction and protein function prediction algorithm[J].Computer Engineering,2020,46(12):52-59. [73] 葛凌霄.基于FP树的蛋白质功能预测算法研究[J].现代计算机,2018,6(1):17-19. GE L X.Research on the protein function prediction algorithm based on FP tree[J].Modern Computer,2018,6(1):17-19. [74] LAZARSFELD J,RODRíGUEZ J,ERDEN M,et al.Majority vote cascading:a semi-supervised framework for improving protein function prediction[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2019,19(4):51-60. [75] CAO M,ZHANG H,PARK J,et al.Going the distance for protein function prediction:a new distance metric for protein interaction networks[J].PLoS ONE,2013,8(10):e76339. [76] PENG W,DU J,LI L,et al.Predicting protein functions by using non-negative matrix factorisation with multi-networks co-regularisation[J].International Journal of Data Mining and Bioinformatics,2020,23(4):318-342. [77] PATHAK A,JAYARAM B.Seq2Enz:an application of mask BLAST methodology with a new chemical logic of amino acids for improved enzyme function prediction[J].Biochimica et Biophysica Acta:Proteins & Proteomics,2022,1870:140721. [78] NALLAPAREDDY V,BOGAM S,DEVARAKONDA H,et al.DeepCys:structure‐based multiple cysteine function prediction method trained on deep neural network:case study on domains of unknown functions belonging to COX2 domains[J].Proteins:Structure,Function,and Bioinformatics,2021,89(7):745-761. [79] CAI Y,WANG J,DENG L.SDN2GO:an integrated deep learning model for protein function prediction[J].Frontiers in Bioengineering and Biotechnology,2020,8:391. [80] BIRó B,ZHAO B,KURGAN L.Complementarity of the residue-level protein function and structure predictions in human proteins[J].Computational and Structural Biotechnology Journal,2022,20(1):2223-2234. [81] PAZOS OBREGON F,SILVERA D,SOTO P,et al.Gene function prediction in five model eukaryotes exclusively based on gene relative location through machine learning[J].Scientific Reports,2022,12:11655. [82] CHIANG Y,HUI W H,CHANG S W.Encoding protein dynamic information in graph representation for functional residue identification[J].Cell Reports Physical Science,2022,3(7):100975. [83] RIFAIOGLU A S,DOGAN T,MARTIN M J,et al.DEEPred:automated protein function prediction with multi-task feed-forward deep neural networks[J].Scientific Reports,2019,9:7344. [84] MANSOOR M,NAUMAN M,UR REHMAN H,et al.Gene ontology GAN(GOGAN):a novel architecture for protein function prediction[J].Soft Computing,2022,26(1):7653-7667. [85] SAHA S,CHATTERJEE P,BASU S,et al.FunPred 3.0:improved protein function prediction using protein interaction network[J].PeerJ,2019,7:e6830. |
[1] | ZHANG Xu, YANG Xuezhi, LIU Xuenan, FANG Shuai. Non-Contact Atrial Fibrillation Detection Based on Video Pulse Features [J]. Computer Engineering and Applications, 2023, 59(8): 331-340. |
[2] | ZHOU Yurong, ZHANG Qiaoling, YU Guangzeng, XU Weiqiang. Review of Acoustic Signal-Based Industrial Equipment Fault Diagnosis [J]. Computer Engineering and Applications, 2023, 59(7): 51-63. |
[3] | XU Dongdong, CAI Xiaohong, LIU Jing, CAO Hui. Review of Depression Detection Using Social Media Text Data [J]. Computer Engineering and Applications, 2023, 59(4): 54-63. |
[4] | PEI Wenbin, WANG Hailong, LIU Lin, PEI Dongmei. Review of Musical Instrument Recognition in Music Information Retrieval [J]. Computer Engineering and Applications, 2023, 59(2): 34-47. |
[5] | LU Huimin, XUE Han, WANG Yilong, WANG Guizeng, SANG Pengcheng. Review of Application of Machine Learning in Radiomics Analysis [J]. Computer Engineering and Applications, 2023, 59(17): 22-34. |
[6] | LIU Mingchuan, ZHANG Kuixing, JIANG Mei, ZHANG Xiaoli, LI Liping. Advances in Classification of Lung Adenocarcinoma Subtypes [J]. Computer Engineering and Applications, 2023, 59(17): 67-79. |
[7] | YANG Zhuo, XIE Yaqi, CHEN Yi, ZHAN Yinwei. Review of Latest Research for Layout Methods of Graph Visualization [J]. Computer Engineering and Applications, 2023, 59(16): 1-15. |
[8] | LIU Dandan, HAN Yi, LIU Xiangyu, XIE Rongrong, WANG Jingxiang, DU Yanhui. Smart Home Recognition Based on WiFi Data Frame Features [J]. Computer Engineering and Applications, 2023, 59(15): 274-280. |
[9] | ZHAO Yanyu, ZHAO Xiaoyong, WANG Lei, WANG Ningning. Review of Explainable Artificial Intelligence [J]. Computer Engineering and Applications, 2023, 59(14): 1-14. |
[10] | MENG Chuang, WANG Hui, LIN Hao, LI Kecen, WANG Xinpeng. Review of Research on Road Traffic Flow Data Prediciton Methods [J]. Computer Engineering and Applications, 2023, 59(14): 51-61. |
[11] | SHI Chaojun, LI Xingkuan, ZHANG Ke, HAN Leile, YANG Shifang. Research Progress of Ground Cloud Image Segmentation Method [J]. Computer Engineering and Applications, 2023, 59(13): 1-16. |
[12] | ZHANG Ran, WANG Xuezhi, WANG Jiajia, MENG Zhen. Survey on Computational Approaches for Drug-Target Interaction Prediction [J]. Computer Engineering and Applications, 2023, 59(12): 1-13. |
[13] | WANG Yu, WANG Xin, ZHANG Shujuan, ZHENG Guoqiang, ZHAO Long, ZHENG Gaofeng. Research on Efficient Knowledge Fusion Method for Heterogeneous Big Data Environments [J]. Computer Engineering and Applications, 2022, 58(6): 142-148. |
[14] | LU Bingjie, LI Weizhuo, NA Chongning, NIU Zuoyao, CHEN Kui. Survey of Auto Insurance Fraud Detection with Machine Learning Models [J]. Computer Engineering and Applications, 2022, 58(5): 34-49. |
[15] | ZHAO Zhenzhen, DONG Yanru, CAO Hui, CAO Bin. Research Status of Elderly Fall Detection Algorithms [J]. Computer Engineering and Applications, 2022, 58(5): 50-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||