Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (17): 67-79.DOI: 10.3778/j.issn.1002-8331.2210-0116
• Research Hotspots and Reviews • Previous Articles Next Articles
LIU Mingchuan, ZHANG Kuixing, JIANG Mei, ZHANG Xiaoli, LI Liping
Online:
2023-09-01
Published:
2023-09-01
刘茗传,张魁星,江梅,张晓丽,李丽萍
LIU Mingchuan, ZHANG Kuixing, JIANG Mei, ZHANG Xiaoli, LI Liping. Advances in Classification of Lung Adenocarcinoma Subtypes[J]. Computer Engineering and Applications, 2023, 59(17): 67-79.
刘茗传, 张魁星, 江梅, 张晓丽, 李丽萍. 肺腺癌亚型分类技术研究进展[J]. 计算机工程与应用, 2023, 59(17): 67-79.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2210-0116
[1] CRONIN K A,LAKE,A J,SCOTT,S,et al.Annual report to the nation on the status of cancer,part I:national cancer statistics[J].Cancera Journal of the American Cancer Society,2018,124(13):2785-2800. [2] MARX A,CHAN J K,COINDRE J M,et al.The 2015 WHO classification of tumors of the thymus:continuity and changes[J].Journal of Thoracic Oncology,2015,10(10):1383. [3] HUO J W,HUANG X T,LI X,et al.Pneu-moictype lung adenocarcinoma with different ranges exhibiting different clinical,imaging,and pathological characteristics[J].Insights Into Imaging,2021,12(1):169. [4] 徐庆东,蔡庆.不同密度早期肺腺癌影像特征与病理学分类的关系研究[J].影像研究与医学应用,2021,5(23):57-58. XU Q D,CAI Q.Study on the relationship between imaging features and pathological classification of early lung adenocarcinoma with different densities[J].Journal of Imaging Research and Medical Applications,2021,5(23):57-58. [5] 戴书华,刘国芳,向东生.肺磨玻璃结节CT值测量在早期癌症诊断中的意义[J].中华肺部疾病杂志,2019,12(6):770-771. DAI S H,LIU G F,XIANG D S.Significance of CT value measurement of pulmonary ground glass nodules in early cancer diagnosis[J].Chinese Journal of Lung Diseases,2019,12(6):770-771. [6] 龚晨虎,徐辉.肺磨玻璃结节行CT检查对诊断早期肺腺癌的临床价值研究[J].当代医学,2021,27(31):172-173. GONG C H,XU H.Clinical value of CT examination for lung ground glass nodules in the diagnosis of early lung adenocarcinoma[J].Contemporary Medicine,2021,27(31):172-173. [7] 张睿娟,雷弋.早期肺腺癌临床病理特征及分子特征研究进展[J].现代肿瘤医学,2021,29(23):4246-4250. ZHANG R J,LEI Y.Research progress on clinicopathological and molecular characteristics of early lung adenocarcinoma[J].Journal of Modern Oncology,2021,9(23):4246-4250. [8] 程春,刘郁鹏,谢鹏飞,等.早期肺腺癌薄层CT影像学特征诊断病理学类型的价值[J].交通医学,2022,36(1):15-18. CHENG C,LIU Y P,XIE P F,et al.The value of thin slice CT imaging features in the diagnosis of pathological types in early lung adenocarcinoma[J].Medical Journal of Communications,2022,36(1):15-18. [9] CLARK K,VENDT B,SMITH K,et al.The cancer imaging archive(TCIA):maintaining and operating a public information repository[J].Journal of Digital Imaging,2013,26(6):1045-1057. [10] ZHENG J,YANG D,ZHU Y,et al.Pulmonary nodule risk classification in adenocarcinoma from CT images using deep CNN with scale transfer module[J].IET Image Processing,2020,14(8):1481-1489. [11] BORKOWSKI A A,BUI M M,THOMAS L B,et al.Lung and colon cancer histopathological image dataset(LC25000)[J].arXiv:1912.12142v1,2019. [12] 周志华.机器学习[M].北京:清华大学出版社,2016:29-35. ZHOU Z H.Machine learning[M].Beijing:Tsinghua University Press,2016:29-35. [13] DIAYRUL D.Chest CT scan image lung[DB/OL].Kaggle Datasets,2022[2022-10-10].https://www.kaggle.com/diayruldip. [14] HU B,REN W,FENG Z,et al.Correlation between CT imaging characteristics and pathological diagnosis for subcentimeter pulmonary nodules[J].Thorac Cancer,2022,13(7):1067-1075. [15] 刘沁峰,刘伟军,王云鹏,等.基于医学工程学的放射组学研究应用探讨[J].中国医疗设备,2019,34(11):165-168. LIU Q F,LIU W J,WANG Y P,et al.Research and application of radiomics based onmedical engineering[J].China Medical Devices,2019,34(11):165-168. [16] 王梅,曹捍波,许华权.MSCT对最大径≤1?cm肺腺癌亚型分型的诊断价值[J].医学影像学杂志,2017(8):1466-1470. WANG M,CAO H B,XU H Q.The diagnostic value of MSCT in subtyping of lung adenocarcinoma with maximum diameter ≤1?cm[J].Journal of Medical Imaging,2017(8):1466-1470. [17] SI M J,TAO X F,DU G Y,et al.Thin-section computed tomography-histopathologic comparisons of pulmonary focal interstitial fibrosis,atypical adenomatous hyperplasia,adenocarcinoma in situ,and minimally invasive aden-ocarcinoma with pure ground-glass opacity[J].European Journal of Radiology,2016,85(10):1708-1715. [18] LIU Y,SUN H,ZHOU F,et al.Imaging features of TSCT predict the classification of pulmonary preinvasive lesion,minimally and invasive adenocarcinoma presented as ground glass nodules[J].Lung Cancer,2017,108:192-197. [19] YANAGAWA M,JOHKOH T,NOGUCHI M,et al.Radiological prediction of tumor invasiveness of lung adenocarcinoma on thin-section CT[J].Medicine,2017,96(11):e6331. [20] KOYAMA H,OHNO Y,AOYAMA N,et al.Comparison of STIR turbo SE imaging and diffusion-weighted imaging of the lung:capability for detection and subtype classification of pulmonary adenocarcinomas[J].International Journal of Medical Radiology,2010,20(4):790-800. [21] GONG J,LIU J Y,HAO W,et al.Computer-aided diagnosis of ground-glass opacity pulmonary nodules using radiomic features analysis[J].Physics in Medicine and Biology,2019,64(13):135015. [22] LI X H,ZHANG W,DU D D,et al.CT features and quantitative analysis of subsolid nodule lung adenocarcinoma for pathological classification prediction[J].Chinese Journal of Medical Imaging,2018,26(9):658-663. [23] YANG S M,CHEN L W,WANG H J,et al.Extraction of radiomic values from lung adenocarcinoma with near-pure subtypes in the international association for the study of Lung Cancer/the American Thoracic Society/the European Respiratory Society(IA-SLC/ATS/E-RS) classification[J].Lung Cancer Journal of the International Association for the Study of Lung Cancer,2018,119:56-63. [24] YANG B,GUO L L,LU G M,et al.Radiomic signature:a non-invasive biomarker for discriminating invasive and non-invasive cases of lung adenocarcinoma[J].Cancer Management and Research,2019,11:7825-7834. [25] LIU J,CUI J J,LIU F,et al.Multi-subtype classification model for non-small cell lung cancer based on radiomics:SLS model[J].Medical Physics,2019,46(7):3091-3100. [26] HUANG Z W,LYU M,AI Z,et al.Pre-operative prediction of Ki-67 expression in various histological subtypes of lung adenocarcinoma based on CT radiomic features[J].Frontiers in Surgery,2021,8:457-470. [27] HAN Y,MA Y,WU Z,et al.Histologic subtype classification of non-small cell lung cancer using PET/CT images[J].European Journal of Nuclear Medicine and Molecular Imaging,2021,48:350-360. [28] WANG S,WANG R,ZHANG S,et al.3D convolutional neural network for differentiating pre-invasive lesions from invasive adenocarcinomas appearing as ground-glass nodules with diameters ≤3?cm using HRCT[J].Quanti-tative Imaging in Medicine & Surgery,2018,8(5):491-499. [29] NI Y F,YANG Y Y,ZHENG D Z,et al.The invasiveness classification of ground-glass nodules using 3D attention network and HRCT[J].Journal of Digital Imaging,2020,33(5):1144-1154. [30] 骆源,徐启飞,吕泽政,等.三维ResNet网络预测肺腺癌结节亚型的效能及其稳定性[J].天津医科大学学报,2022,28(3):295-300. LUO Y,XU Q F,LV Z Z,et al.Efficacy and stability of 3D ResNet network in predicting pulmonary adenocarcinoma nodule subtypes[J].Journal of Tianjin Medical University,2022,28(3):295-300. [31] LV Y,WEI Y,XU K,et al.3D deep learning versus the current methods for predicting tumor invasiveness of lung adenocarcinoma based on high-resolution computed tomography images[J].Frontiers in Oncology,2022,12:995870. [32] GONG J,LIU J,LI H,et al.Deep learning based stage-wise risk stratification for early lung adenocarcinoma in CT images:a multicenter study[J].Cancers(Basel),2021,13(13):3300. [33] WANG X,LI Q,CAI J,et al.Predicting the invasiveness of lung adenocarcinomas appearing as ground-glass nodule on CT scan using multi-task learning and deep radiomics[J].AME Publishing Company,2020,9(4):1397-1406. [34] WANG C D,SHAO J,LV J W,et al.Deep learning for predicting subtype classification and survival of lung adenocarcinoma on computed tomography[J].Translational Oncology,2021,14(8):101141. [35] CHO H,LEE H Y,KIM E,et al.Radiomics guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans[J].Communications Biology,2021,4(1):1286. [36] DING H,XIA W,ZHANG L,et al.CT-based deep learning model for invasiveness classification and micropapillary pattern prediction within lung adenocarcinoma[J].Frontiers in Oncology,2020,10:1186-1195. [37] 杨婧,耿辰,王海林,等.基于DenseNet的低分辨CT影像肺腺癌组织学亚型分类[J].浙江大学学报(工学版),2019,53(6):1164-1170. YANG J,GENG C,WANG H L,et al.Classification of histological subtypes of lung adenocarcinoma on low-resolution CT images based on DenseNet[J].Journal of Zhejiang University(Engineering Science),2019,53(6):1164-1170. [38] ALI I,MUZAMMIL M,HAQ I U,et al.Deep feature selection and decision level fusion for lungs nodule classification[J].IEEE Access,2021,9:18962-18973. [39] FU Y,XUE P,LI N,et al.Fusion of 3D lung CT and serum biomarkers for diagnosis of multiple pathological types on pulmonary nodules[J].Computer Methods and Programs in Biomedicine,2021,210:106381-106393. [40] LIU H,JIAO Z C,HAN W J,et al.Identifying the histologic subtypes of non-small cell lung cancer with computed tomography imaging:a comparative study of capsule net,convolutional neural network,and radiomics[J].Quantitative Imaging in Medicine and Surgery,2021,11(6):2756-2765. [41] 医学名词审定委员会结核病学名词审定分委员会.结核病学名词[M].北京:科学出版社,2019. Subcommittee on the Validation of Medical Terms in Tuberculosis.Terminology in tuberculosis[M].Beijing:Science Press,2019. [42] TRAVIS W D,BRAMBILLA E,NICHOLSON A G,et al.The 2015 World Health organization classification of lung tumors impact of genetic,clinical and radiologic advances since the 2004 classification[J].Journal of Thor-acic Oncology,2015,10(9):1243-1260. [43] PENDAR A,BEHZAD H,ALIREZA M E,et al.Representation learning-based unsupervised domain adaptation for classification of breast cancer histopathology images[J].Biocybernetics and Biomedical Engineering,2018,38(3):671-683. [44] 王奎,张宏毅,庞瑶,等.基于快速诊断工具建立的肺腺癌亚型研究进展[J/OL].中国胸心血管外科临床杂志:1-7[2022-08-10].http://kns.cnki.net/kcms/detail/51.1492.R. 20220329.1755.008.html. WANG K,ZHANG H Y,PANG Y,et al.Research progress of lung adenocarcinoma subtypes based on rapid diagnostic tools[J/OL].Chinese Journal of Clinical Thoracic and Cardiovascular Surgery:1-7[2022-08-10].http://kns.cnki.net/kcms/detail/51.1492.R.20220329.1755.008.html. [45] TRAVIS W D.Pathology of lung cancer[J].Clinics in Chest Medicine,2011,32(4):669-692. [46] SCHMID K,ANGERSTEIN N,GELEFF S,et al.Quantitative nuclear texture features analysis confirms WHO classification 2004 for lung carcinomas[J].Modern Pathology,2006,19(3):453-459. [47] NAKAZATO Y,MINAMI Y,KOBAYASHI H,et al.Nuclear grading of primary pulmonary adenocarcinomas:correlation between nulear size and prognosis[J].Cancer,2010,116(8):2011-2019. [48] 李艳,闫屹,张毛为,等.Ki-67表达与肺腺癌病理亚型及预后的关系[J].徐州医科大学学报,2022,42(4):241-247. LI Y,YAN Y,ZHANG M W,et al.Relationship between Ki-67 expression and pathological subtypes and prognosis of lung adenocarcinoma[J].Journal of Xuzhou Medical University,2022,42(4):241-247. [49] KRIEGSMANN M,CASADONTE R,KRIEGSMANN J,et al.Reliable entity subtyping in non-small cell lung cancer by maldi imaging mass spectrometry on formalin-fixed paraffin-embedded tissue specimens[J].Molecular & Cellular Proteomics,2016,15(10):3081-3089. [50] NEUMANN J M,FREITAG H,HRATMANN J S,et al.Subtyping non-small cell lung cancer by histology-guided spatial metabolomics[J].Journal of Cancer Research and Clinical Oncology,2022,148(2):351-360. [51] GRO?ERUESCHKAMP F,KALLENBACH-THIELTGE A,BEHRENS T,et al.Marker-free automated histopathological annotation of lung tumour subtypes by FTIR imaging[J].The Analyst,2015,140:2114-2120. [52] YU K H,ZHANG C,BERRY G J,et al.Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features[J].Nature Communications,2016,7:12474. [53] CARRILLO-PEREZ F,MORALES J C,CASTILLO-SECILLA D,et al.Non-small-cell lung cancer classification via RNA-Seq and histology imaging probability fusion[J].BMC Bioinformatics,2021,22(1):1-19. [54] NISHIO M,NISHIO M,JIMBO N,et al.Homology-based image processing for automatic classification of histopathological images of lung tissue[J].Cancers,2021,13(6):1192. [55] ECHLE A,RINDTORFF N T,BRINKER T J,et al.Deep learning in cancer pathology:a new generation of clinical biomarkers[J].British Journal of Cancer,2021,124(4):686-696. [56] WEI J W,TAFE L J,LINNIK Y A,et al.Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks[J].Scientific Reports,2019,9:3358. [57] GERTYCH A,SWIDERSKA-CHADAJ Z,MA Z,et al.Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides[J].Scientific Reports,2019,9:1483. [58] ANTONIO V,NAOAKI O,AKIRA S,et al.Classification of lung adenocarcinoma transcriptome subtypes from pathological images using deepconvolutional networks[J].International Journal of Computer Assisted Radiology and Surgery,2018,13(12):1905-1913. [59] SADHWANI A,CHANG H W,BEHROOZ A,et al.Comparative analysis of machine learning approaches to classify tumor mutation burden in lung adenocarcinoma using histopathology images[J].Scientific Reports,2021,11(1):16605. [60] 蔡阳阳.多原发性肺癌的基因组学研究[D].长春:吉林大学. CAI Y Y.Genomics study of multiple primary lung cancer[D].Changchun:Jilin University,2020. [61] ZHANG Y,ZHANG L,LI R,et al.Genetic variations in cancer-related significantly mutated genes and lung cancer susceptibility[J].Annals of Oncology,2017,7:1625-1630. [62] JIANG J H,GAO J,CHEN C Y,et al.Circulating tumor cell methylation profiles reveal the classification and evolution of non-small cell lung cancer[J].Translational Lung Cancer Research,2022,11(2),224-237. [63] HU F Y,ZHOU Y,WANG Q,et al.Gene expression classification of lung adenocarcinoma into molecular subtypes[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2019,17(4):1187-1197. [64] XU D,ZHANG J L,XU H X,et al.Multi-scale supervised clustering-based feature selection for tumor classification and identification of biomarkers and targets on genomic data[J].BMC Genomics,2020,21(1):650. [65] DHAHBI J M,CHEN J W.Lung adenocarcinoma and lung squamous cell carcinoma cancer classification,biomarker identification,and gene-expression analysis using overlapping feature selection methods[J].Scientific Reports,2021,11(1):13323. [66] 周兵,王洁,彭丽姿,等.浸润性肺腺癌组织学亚型与驱动基因状态的相关性研究[J].临床医药实践,2021,30(11):810-816. ZHOU B,WANG J,PENG L Z,et al.Correlation between histological subtypes and driver gene status in invasive lung adenocarcinoma[J].Clinical Medicine Practice,2021,30(11):810-816. [67] ZHOU M,LEUNG A,ECHEGARAY S,et al.Non-small cell lung cancer radiogenomics map identifies relationships between molecular and imaging phenotypes with prognostic implications[J].Radiology,2018,286(1):307-315. [68] CHI W W,CHAUDHRY A.Radiogenomics of lung cancer[J].Journal of Thoracic Disease,2020,12(9):5104-5109. [69] SHAN Q Q,ZHANG Y F,LIANG Z A.Clustering analysis and prognostic signature of lung adenocarcinoma based on the tumor microenvironment[J].Scientific Reports,2022,12(1):12059. [70] KRIZHEVSKY A,SUTSKEVER I,HINTONG E.Image-Net classification with deep convolutional neural networks[C]//Communications of the ACM,2017,60(6):84-90. [71] ZISSERMAN A,SIMONYAN K.Very deep convolutional networks for large-scale image recognition[C]//2015 IEEE Conferenceon Computer Vision and Pattern Recognition,2015. [72] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [73] HUANG G,LIU Z,WEINBERGER K Q,et al.Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:2261-2269. [74] BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].arXiv:1409.0473,2014. |
[1] | CHEN Jishang, Abudukelimu Halidanmu, LIANG Yunze, Abulizi Abudukelimu, Aishan Mikelayi, GUO Wenqiang. Review of Application of Deep Learning in Symbolic Music Generation [J]. Computer Engineering and Applications, 2023, 59(9): 27-45. |
[2] | JIANG Qiuxiang, GUO Weipeng, WANG Zilong, OUYANG Xingtao, LONG Ruirui. Application and Prospect of Python Language in Field of Hydrology and Water Resources [J]. Computer Engineering and Applications, 2023, 59(9): 46-58. |
[3] | LUO Huilan, CHEN Han. Spatial-Temporal Convolutional Attention Network for Action Recognition [J]. Computer Engineering and Applications, 2023, 59(9): 150-158. |
[4] | DAI Chao, LIU Ping, SHI Juncai, REN Hongjie. Regularized Extraction of Remotely Sensed Image Buildings Using U-Shaped Networks [J]. Computer Engineering and Applications, 2023, 59(8): 105-116. |
[5] | ZHANG Xu, YANG Xuezhi, LIU Xuenan, FANG Shuai. Non-Contact Atrial Fibrillation Detection Based on Video Pulse Features [J]. Computer Engineering and Applications, 2023, 59(8): 331-340. |
[6] | LIU Hualing, PI Changpeng, ZHAO Chenyu, QIAO Liang. Review of Cross-Domain Object Detection Algorithms Based on Depth Domain Adaptation [J]. Computer Engineering and Applications, 2023, 59(8): 1-12. |
[7] | HE Jiafeng, CHEN Hongwei, LUO Dehan. Review of Real-Time Semantic Segmentation Algorithms for Deep Learning [J]. Computer Engineering and Applications, 2023, 59(8): 13-27. |
[8] | ZHANG Yanqing, MA Jianhong, HAN Ying, CAO Yangjie, LI Jie, YANG Cong. Review of Research on Real-World Single Image Super-Resolution Reconstruction [J]. Computer Engineering and Applications, 2023, 59(8): 28-40. |
[9] | WANG Jing, JIN Yuchu, GUO Ping, HU Shaoyi. Survey of Camera Pose Estimation Methods Based on Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 1-14. |
[10] | JIANG Yuying, CHEN Xinyu, LI Guangming, WANG Fei, GE Hongyi. Graph Neural Network and Its Research Progress in Field of Image Processing [J]. Computer Engineering and Applications, 2023, 59(7): 15-30. |
[11] | ZHOU Yurong, ZHANG Qiaoling, YU Guangzeng, XU Weiqiang. Review of Acoustic Signal-Based Industrial Equipment Fault Diagnosis [J]. Computer Engineering and Applications, 2023, 59(7): 51-63. |
[12] | WEI Jian, ZHAO Xu, LI Lianpeng. Siamese Network Weak Target Tracking Algorithm Fused with Location Information Attention [J]. Computer Engineering and Applications, 2023, 59(7): 198-206. |
[13] | ZHAO Hongwei, ZHENG Jiajun, ZHAO Xinxin, WANG Shengchun, LI Yidong. Rail Surface Defect Method Based on Bimodal-Modal Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 285-293. |
[14] | LYU Xiaoling, YANG Shengyue, ZHANG Minglu, LIANG Ming, WANG Junchao. Improved Fisheye Image Target Detection Algorithm Based on YOLOv5 Network [J]. Computer Engineering and Applications, 2023, 59(6): 241-250. |
[15] | PENG Pei, ZHANG Meiling, ZHENG Dong. Side Channel Attack Fused with CNN_LSTM [J]. Computer Engineering and Applications, 2023, 59(6): 268-276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||