Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (14): 51-61.DOI: 10.3778/j.issn.1002-8331.2209-0458
• Research Hotspots and Reviews • Previous Articles Next Articles
MENG Chuang, WANG Hui, LIN Hao, LI Kecen, WANG Xinpeng
Online:
2023-07-15
Published:
2023-07-15
孟闯,王慧,林浩,李科岑,王鑫鹏
MENG Chuang, WANG Hui, LIN Hao, LI Kecen, WANG Xinpeng. Review of Research on Road Traffic Flow Data Prediciton Methods[J]. Computer Engineering and Applications, 2023, 59(14): 51-61.
孟闯, 王慧, 林浩, 李科岑, 王鑫鹏. 道路交通流数据预测方法研究综述[J]. 计算机工程与应用, 2023, 59(14): 51-61.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2209-0458
[1] STEPHANEDES Y J,MICHALOPOULOS P G,PLUM R A.Improved estimation of traffic flow for real time control[J].Transportation Research Record Journal of the Transportation Research Board,1980,795:28-39. [2] AHMED M.Analysis of freeway traffic time-series data by using box-Jenkins techniques[J].Transportation Research Record,1979,722:1-9. [3] WILLIAMS B M,HOEL L A.Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process:theoretical basis and empirical results[J].Journal of Transportation Engineering,2003,129(6):664-672. [4] 靳小飞.基于ARFIMA混合模型的短时交通流预测研究[D].武汉:华中科技大学,2020. JIN X F.Research on short-term traffic flow prediction based on ARFIMA hybrid model[D].Wuhan:Huazhong University of Science and Technology,2020. [5] 杨高飞,徐睿,秦鸣,等.基于ARMA和卡尔曼滤波的短时交通预测[J].郑州大学学报(工学版),2017,38(2):36-40. YANG G F,XU R,QIN M,et al.Short-term traffic forecasting based on ARMA and Kalman filter[J].Journal of Zhengzhou University(Engineering Edition),2017,38(2):36-40. [6] 申雷霄,陆宇航,郭建华.卡尔曼滤波短时交通流预测普通国省道适应性研究[J].交通信息与安全,2021,39(5):117-127. SHEN L X,LU Y H,GUO J H.Research on the adaptability of Kalman filter for short-term traffic flow prediction of ordinary national and provincial highways[J].Traffic Information and Safety,2021,39(5):117-127. [7] 张矢宇,杨宇昊,陈尘,等.基于回归卡尔曼滤波组合模型的航道整治区域船舶交通流时空预测[J].大连海事大学学报,2021,47(1):37-44. ZHANG S Y,YANG Y H,CHEN C,et al.Spatio-temporal prediction of ship traffic flow in waterway regulation area based on combined regression-Kalman filter model[J].Journal of Dalian Maritime University,2021,47(1):37-44. [8] DAVIS G,Nihan N L.Nonparametric regression and short-term freeway traffic forecasting[J].Journal of Transportation Engineering,1991,117(2):178-188. [9] 罗向龙,李丹阳,杨彧,等.基于KNN-LSTM的短时交通流预测[J].北京工业大学学报,2018,44(12):1521-1527. LUO X L,LI D Y,YANG Y,et al.Short-term traffic flow prediction based on KNN-LSTM[J].Journal of Beijing University of Technology,2018,44(12):1521-1527. [10] 祁朵,毛政元.基于自适应时序剖分与KNN的短时交通流量预测[J].地球信息科学学报,2022,24(2):339-351. QI D,MAO Z Y.Short-term traffic flow prediction based on adaptive time series segmentation and KNN[J].Journal of Geoinformation Science,2022,24(2):339-351. [11] 杨兆升,王媛,管青.基于支持向量机方法的短时交通流量预测方法[J].吉林大学学报(工学版),2006(6):881-884. YANG Z S,WANG Y,GUAN Q.Short-term traffic flow prediction method based on support vector machine method[J].Journal of Jilin University(Engineering Science Edition),2006(6):881-884. [12] 林浩,李雷孝,王慧.SPGAPSO-SVM:一种城市公交客流量预测算法[J].小型微型计算机系统,2020,41(11):2458-2464. LIN H,LI L X,WANG H.SPGAPSO-SVM:an urban bus passenger flow prediction algorithm[J].Small Microcomputer System,2020,41(11):2458-2464. [13] HU W B,YAN L P,LIN K Z,et al.A short-term traffic flow forecasting method based on the hybrid PSO-SVR[J].Neural Processing Letters,2016,43(1):155-172. [14] 孙朝东,梁雪春.改进的花授粉算法优化SVM在交通流中的应用[J].计算机工程与设计,2016,37(10):2717-2721. SUN C D,LIANG X C.Application of improved pollination algorithm to optimize SVM in traffic flow[J].Computer Engineering and Design,2016,37(10):2717-2721. [15] 康军,段宗涛,唐蕾,等.一种LS-SVM在线式短时交通流预测方法[J].计算机应用研究,2018,35(10):2965-2968. KANG J,DUAN Z T,TANG L,et al.An LS-SVM online short-term traffic flow prediction method[J].Computer Application Research,2018,35(10):2965-2968. [16] 黄振盛,汪玉美,韩江洪,等.基于MLS-SVM和时空特性的短时交通流量预测方法[J].合肥工业大学学报(自然科学版),2020,43(1):57-63. HUANG Z S,WANG Y M,HAN J H,et al.Short-term traffic flow prediction method based on MLS-SVM and spatiotemporal characteristics[J].Journal of Hefei University of Technology(Natural Science Edition),2020,43(1):57-63. [17] SUN B,CHENG W,GOSWAMI P,et al.Short-term traffic forecasting using self-adjusting k-nearest neighbours[J].IET Intelligent Transport Systems,2017,12(1):41-48. [18] 史殿习,丁涛杰,丁博,等.一种基于非参数回归的交通速度预测方法[J].计算机科学,2016,43(2):224-229. SHI D X,DING T J,DING B,et al.A traffic speed prediction method based on nonparametric regression[J].Computer Science,2016,43(2):224-229. [19] 梁艳平,毛政元,邹为彬,等.基于相似数据聚合与变K值KNN的短时交通流量预测[J].地球信息科学学报,2018,20(10):1403-1411. LIANG Y P,MAO Z Y,ZOU W B,et al.Short-term traffic flow prediction based on similar data aggregation and variable K value KNN[J].Journal of Geoinformation Science,2018,20(10):1403-1411. [20] UNSOK R.Construction of traffic state vector using mutual information for short-term traffic flow prediction[J].Transportation Research Part C,2018,96:55-71. [21] 张伟斌,张帅,郭海锋,等.基于交通因子状态网络的城市交叉口交通流预测[J].中国公路学报,2021,34(12):217-228. ZHANG W B,ZHANG S,GUO H F,et al.Prediction of traffic flow at urban intersections based on traffic factor state network[J].Chinese Journal of Highways,2021,34(12):217-228. [22] 马全党,江福才,范庆波,等.PSO-无偏灰色马尔科夫模型在船舶交通流量预测中的应用[J].中国航海,2019,42(1):97-103. MA Q D,JIANG F C,FAN Q B,et al.Application of PSO-unbiased grey Markov model in ship traffic flow prediction[J].China Navigation,2019,42(1):97-103. [23] 罗文慧,董宝田,王泽胜.基于CNN-SVR混合深度学习模型的短时交通流预测[J].交通运输系统工程与信息,2017,17(5):68-74. LUO W H,DONG B T,WANG Z S.Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model[J].Transportation System Engineering and Information,2017,17(5):68-74. [24] 叶景,李丽娟,唐臻旭.基于CNN-XGBoost的短时交通流预测[J].计算机工程与设计,2020,41(4):1080-1086. YE J,LI L J,TANG Z X.Short-term traffic flow prediction based on CNN-XGBoost[J].Computer Engineering and Design,2020,41(4):1080-1086. [25] 潘伟靖,陈德旺.基于GRU-SVR的短时交通流量预测研究[J].计算机技术与发展,2019,29(10):11-14. PAN W J,CHEN D W.Research on short-term traffic flow prediction based on GRU-SVR[J].Computer Technology and Development,2019,29(10):11-14. [26] JIANG L.Traffic flow prediction method based on deep learning[J].Journal of Physics Conference Series,2020(1):20-50. [27] 杨凤满.基于人工神经网络的交通流预测方法综述[J].公路交通科技,2020,37(S1):130-135. YANG F M.A review of traffic flow prediction methods based on artificial neural network[J].Highway Transportation Science and Technology,2020,37(S1):130-135. [28] KANG D,LV Y,CHEN Y Y.Short-term traffic flow prediction with LSTM recurrent neural network[C]//2017 IEEE 20th International Conference on Intelligent Transportation Systems(ITSC),2017. [29] ZHENG Z,CHEN W,WU X,et al.LSTM network:a deep learning approach for short-term traffic forecast[J].IET Intelligent Transport Systems,2017,11(2):68-75. [30] SHI X,CHEN Z,WANG H,et al.Convolutional LSTM network:a machine learning approach for precipitation nowcasting[J].arXiv:1506.04214,2015. [31] 唐克双,陈思曲,曹喻旻,等.基于Inception卷积神经网络的城市快速路行程速度短时预测[J].同济大学学报(自然科学版),2021,49(3):370-381. TANG K S,CHEN S Q,CAO Y M,et al.Short-time travel speed prediction for urban expressways based on convolutional neural network with Inception module[J].Journal of Tongji University(Natural Science),2021,49(3):370-381. [32] 李磊,张青苗,赵军辉,等.基于改进CNN-LSTM组合模型的分时段短时交通流预测[J].应用科学学报,2021,39(2):185-198. LI L,ZHANG Q M,ZHAO J H,et al.Prediction of short-term traffic flow by time period based on improved CNN-LSTM combined model[J].Chinese Journal of Applied Sciences,2021,39(2):185-198. [33] DONAHUE J,HEND L A,GUAD S,et al.Long-term recurrent convolutional networks for visual recognition and description[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2015. [34] JAIN A,ZAMIR A R,SAVARESE S,et al.Structural-RNN:deep learning on spatio-temporal graphs[C]//IEEE Conference on Computer Vision & Pattern Recognition,2015. [35] 晏臻,于重重,韩璐,等.基于CNN+LSTM的短时交通流量预测方法[J].计算机工程与设计,2019,40(9):2620-2624. YAN Z,YU C C,HAN L,et al.Short-term traffic flow prediction method based on CNN+LSTM[J].Computer Engineering and Design,2019,40(9):2620-2624. [36] 王婧娟,陈庆奎.一种时空注意力网络的交通预测模型[J].小型微型计算机系统,2021,42(2):303-307. WANG J J,CHEN Q K.A traffic prediction model of a spatiotemporal attention network[J].Small and Microcomputer System,2021,42(2):303-307. [37] 王海起,李留珂,陈海波.基于图结构的城市道路短时交通流量时空预测模型[J].地理与地理信息科学,2021,37(4):1-9. WANG H Q,LI L K,CHEN H B.A spatiotemporal prediction model of urban road short-term traffic flow based on graph structure[J].Geography and Geographic Information Science,2021,37(4):1-9. [38] KIP F,WELLING M.Semi-supervised classification with graph convolutional networks[C]//International Conference on Learning Representations(ICLR),2017. [39] SEO Y,DEFFER M,VAND P,et al.Structured sequence modeling with graph convolutional recurrent networks[C]//International Conference on Learning Representations(ICLR),2016. [40] LI Y,YU R,SHA C,et al.Diffusion convolutional recurrent neural network:data-driven traffic forecasting[C]//International Conference on Learning Representations(ICLR),2018. [41] 冯宁,郭晟楠,宋超,等.面向交通流量预测的多组件时空图卷积网络[J].软件学报,2019,30(3):759-769. FENG N,GUO S N,SONG C,et al.Multi-component spatiotemporal graph convolutional network for traffic flow prediction[J].Journal of Software,2019,30(3):759-769. [42] 戴俊明,曹阳,沈琴琴,等.基于多时空图卷积网络的交通流预测[J].计算机应用研究,2022,39(3):780-784. DAI J M,CAO Y,SHEN Q Q,et al.Traffic flow prediction based on multi-spatiotemporal graph convolutional networks[J].Computer Application Research,2022,39(3):780-784. [43] GUO S,LIN Y,FENG N,et al.Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//AAAI Conference on Artificial Intelligence,2019:922-929. [44] LI C,CUI Z,ZHENG W,et al.Spatio-temporal graph convolution for skeleton based action recognition[C]//AAAI Conference on Artificial Intelligence,2018. [45] SONG C,LIN Y,GUO S,et al.Spatial-temporal synchronous graph convolutional networks:a new framework for spatial-temporal network data forecasting[C]//AAAI Conference on Artificial Intelligence,2020:914-921. [46] 王庆荣,田可可,朱昌锋,等.融合多因素的短时交通流预测研究[J].计算机工程与应用,2022,58(21):309-316. WANG Q R,TIAN K K,ZHU C F,et al.Short term traffic flow prediction based on multi-factors[J].Computer Engineering and Applications,2022,58(21):309-316. [47] 吕鲜,戚湧,张伟斌.基于长短期记忆模型的交通拥堵预测方法[J].南京理工大学学报,2020,44(1):26-32. LV X,QI Y,ZHANG W B.Traffic congestion prediction method based on short-term and short-term memory model[J].Journal of Nanjing University of Technology,2020,44(1):26-32. [48] 李桃迎,王婷,张羽琪.考虑多特征的高速公路交通流预测模型[J].交通运输系统工程与信息,2021,21(3):101-111. LI T Y,WANG T,ZHANG Y Q.Highway traffic flow prediction model considering multiple characteristics[J].Transportation System Engineering and Information,2021,21(3):101-111. [49] XU D,WEI C,PENG P,et al.GE-GAN:a novel deep learning framework for road traffic state estimation[J].Transportation Research,Part C:Emerging Technologies,2020,117:102635. |
[1] | CHEN Jishang, Abudukelimu Halidanmu, LIANG Yunze, Abulizi Abudukelimu, Aishan Mikelayi, GUO Wenqiang. Review of Application of Deep Learning in Symbolic Music Generation [J]. Computer Engineering and Applications, 2023, 59(9): 27-45. |
[2] | JIANG Qiuxiang, GUO Weipeng, WANG Zilong, OUYANG Xingtao, LONG Ruirui. Application and Prospect of Python Language in Field of Hydrology and Water Resources [J]. Computer Engineering and Applications, 2023, 59(9): 46-58. |
[3] | LUO Huilan, CHEN Han. Spatial-Temporal Convolutional Attention Network for Action Recognition [J]. Computer Engineering and Applications, 2023, 59(9): 150-158. |
[4] | ZHANG Xu, YANG Xuezhi, LIU Xuenan, FANG Shuai. Non-Contact Atrial Fibrillation Detection Based on Video Pulse Features [J]. Computer Engineering and Applications, 2023, 59(8): 331-340. |
[5] | LIU Hualing, PI Changpeng, ZHAO Chenyu, QIAO Liang. Review of Cross-Domain Object Detection Algorithms Based on Depth Domain Adaptation [J]. Computer Engineering and Applications, 2023, 59(8): 1-12. |
[6] | HE Jiafeng, CHEN Hongwei, LUO Dehan. Review of Real-Time Semantic Segmentation Algorithms for Deep Learning [J]. Computer Engineering and Applications, 2023, 59(8): 13-27. |
[7] | ZHANG Yanqing, MA Jianhong, HAN Ying, CAO Yangjie, LI Jie, YANG Cong. Review of Research on Real-World Single Image Super-Resolution Reconstruction [J]. Computer Engineering and Applications, 2023, 59(8): 28-40. |
[8] | DAI Chao, LIU Ping, SHI Juncai, REN Hongjie. Regularized Extraction of Remotely Sensed Image Buildings Using U-Shaped Networks [J]. Computer Engineering and Applications, 2023, 59(8): 105-116. |
[9] | WEI Jian, ZHAO Xu, LI Lianpeng. Siamese Network Weak Target Tracking Algorithm Fused with Location Information Attention [J]. Computer Engineering and Applications, 2023, 59(7): 198-206. |
[10] | ZHAO Hongwei, ZHENG Jiajun, ZHAO Xinxin, WANG Shengchun, LI Yidong. Rail Surface Defect Method Based on Bimodal-Modal Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 285-293. |
[11] | WANG Jing, JIN Yuchu, GUO Ping, HU Shaoyi. Survey of Camera Pose Estimation Methods Based on Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 1-14. |
[12] | JIANG Yuying, CHEN Xinyu, LI Guangming, WANG Fei, GE Hongyi. Graph Neural Network and Its Research Progress in Field of Image Processing [J]. Computer Engineering and Applications, 2023, 59(7): 15-30. |
[13] | ZHOU Yurong, ZHANG Qiaoling, YU Guangzeng, XU Weiqiang. Review of Acoustic Signal-Based Industrial Equipment Fault Diagnosis [J]. Computer Engineering and Applications, 2023, 59(7): 51-63. |
[14] | LYU Xiaoling, YANG Shengyue, ZHANG Minglu, LIANG Ming, WANG Junchao. Improved Fisheye Image Target Detection Algorithm Based on YOLOv5 Network [J]. Computer Engineering and Applications, 2023, 59(6): 241-250. |
[15] | PENG Pei, ZHANG Meiling, ZHENG Dong. Side Channel Attack Fused with CNN_LSTM [J]. Computer Engineering and Applications, 2023, 59(6): 268-276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||