[1] YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 7444-7452.
[2] SHI L, ZHANG Y F, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 12018-12027.
[3] CHEN Y X, ZHANG Z Q, YUAN C F, et al. Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 13339-13348.
[4] SHAHROUDY A, LIU J, NG T T, et al. NTU RGB+D: a large scale dataset for 3D human activity analysis[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1010-1019.
[5] LIU J, SHAHROUDY A, PEREZ M, et al. NTU RGB D 120: a large-scale benchmark for 3D human activity understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10): 2684-2701.
[6] 毛国君, 王一锦. 融合内外依赖的人体骨架动作识别模型[J]. 计算机工程与应用, 2023, 59(21): 132-140.
MAO G J, WANG Y J. Human skeleton action recognition model integrated internal and external dependences[J]. Computer Engineering and Applications, 2023, 59(21): 132-140.
[7] 甄昊宇, 张德. 结合自适应图卷积与时态建模的骨架动作识别[J]. 计算机工程与应用, 2023, 59(18): 137-144.
ZHEN H Y, ZHANG D. Combining adaptive graph convolution and temporal modeling for skeleton-based action recognition[J]. Computer Engineering and Applications, 2023, 59(18): 137-144.
[8] 陈金怡, 罗圣钦, 李洪均. 基于限幅加权骨骼节点滤波的体感交互技术[J]. 数据采集与处理, 2022, 37(3): 715-724.
CHEN J Y, LUO S Q, LI H J. Somatosensory interaction technology based on limiting weighted skeleton node filtering[J]. Journal of Data Acquisition and Processing, 2022, 37(3): 715-724.
[9] ZHENG N G, WEN J, LIU R S, et al. Unsupervised representation learning with long-term dynamics for skeleton based action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018.
[10] SU K, LIU X L, SHLIZERMAN E. PREDICT & CLUSTER: unsupervised skeleton based action recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9628-9637.
[11] LIN L L, SONG S J, YANG W H, et al. MS2L: multi-task self-supervised learning for skeleton based action recognition[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 2490-2498.
[12] RAO H C, XU S H, HU X P, et al. Augmented skeleton based contrastive action learning with momentum LSTM for unsupervised action recognition[J]. Information Sciences, 2021, 569: 90-109.
[13] DONG J F, SUN S K, LIU Z L, et al. Hierarchical contrast for unsupervised skeleton-based action representation learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 525-533.
[14] LI L G, WANG M S, NI B B, et al. 3D human action representation learning via cross-view consistency pursuit[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4739-4748.
[15] GUO T Y, LIU H, CHEN Z, et al. Contrastive learning from extremely augmented skeleton sequences for self-supervised action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 762-770.
[16] XU S H, RAO H C, HU X P, et al. Prototypical contrast and reverse prediction: unsupervised skeleton based action recognition[J]. IEEE Transactions on Multimedia, 2023, 25: 624-634.
[17] LI C, ZHONG Q Y, XIE D, et al. Co-occurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation[J]. arXiv:1804.06055, 2018.
[18] ZHANG P F, LAN C L, XING J L, et al. View adaptive neural networks for high performance skeleton-based human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1963-1978.
[19] SONG Y F, ZHANG Z, SHAN C F, et al. Constructing stronger and faster baselines for skeleton-based action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 1474-1488.
[20] LIU Z Y, ZHANG H W, CHEN Z H, et al. Disentangling and unifying graph convolutions for skeleton-based action recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 140-149.
[21] YE F F, PU S L, ZHONG Q Y, et al. Dynamic GCN: context-enriched topology learning for skeleton-based action recognition[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 55-63.
[22] SONG Y F, ZHANG Z, WANG L. Richly activated graph convolutional network for action recognition with incomplete skeletons[C]//Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway: IEEE, 2019: 1-5.
[23] SONG Y F, ZHANG Z, SHAN C F, et al. Richly activated graph convolutional network for robust skeleton-based action recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(5): 1915-1925.
[24] GUTMANN MU, HYVARINEN A. Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics[J]. Journal of machine learning research, 2012,13(2):307-361.
[25] THOKER F M, DOUGHTY H, SNOEK C G M. Skeleton-contrastive 3D action representation learning[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 1655-1663.
[26] YANG D, WANG Y H, DANTCHEVA A, et al. View-invariant skeleton action representation learning via motion retargeting[J]. International Journal of Computer Vision, 2024, 132(7): 2351-2366.
[27] FRANCO L, MANDICA P, MUNJAL B, et al. Hyperbolic self-paced learning for self-supervised skeleton-based action representations[J]. arXiv:2303.06242, 2023.
[28] ZHOU Y J, DUAN H D, RAO A Y, et al. Self-supervised action representation learning from partial spatio-temporal skeleton sequences[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 3825-3833.
[29] GUO T Y, LIU M Y, LIU H, et al. Improving self-supervised action recognition from extremely augmented skeleton sequences[J]. Pattern Recognition, 2024, 150: 110333. |