
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (22): 137-147.DOI: 10.3778/j.issn.1002-8331.2408-0146
• Pattern Recognition and Artificial Intelligence • Previous Articles Next Articles
SUN Shuaiqi, WEI Guiying, WU Sen
Online:2025-11-15
Published:2025-11-14
孙帅祺,魏桂英,武森
SUN Shuaiqi, WEI Guiying, WU Sen. Sentiment Analysis Method Integrating Hypergraph Enhancement and Dual Contrastive Learning[J]. Computer Engineering and Applications, 2025, 61(22): 137-147.
孙帅祺, 魏桂英, 武森. 融合超图增强与双重对比学习的情感分析方法[J]. 计算机工程与应用, 2025, 61(22): 137-147.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2408-0146
| [1] AN J Y, WAN ZAINON W M N. Integrating color cues to improve multimodal sentiment analysis in social media[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106874. [2] YANG X C, FENG S, WANG D L, et al. Image-text multimodal emotion classification via multi-view attentional network[J]. IEEE Transactions on Multimedia, 2021, 23: 4014-4026. [3] ZHU L N, ZHU Z C, ZHANG C W, et al. Multimodal sentiment analysis based on fusion methods: a survey[J]. Information Fusion, 2023, 95: 306-325. [4] 闫尚义, 王靖亚, 刘晓文, 等. 基于多头自注意力池化与多粒度特征交互融合的微博情感分析[J]. 数据分析与知识发现, 2023, 7(4): 32-45. YAN S Y, WANG J Y, LIU X W, et al. Microblog sentiment analysis with multi-head self-attention pooling and multi-granularity feature interaction fusion[J]. Data Analysis and Knowledge Discovery, 2023, 7(4): 32-45. [5] 吴旭旭, 陈鹏, 江欢. 基于多特征融合的微博细粒度情感分析[J]. 数据分析与知识发现, 2023, 7(12): 102-113. WU X X, CHEN P, JIANG H. Micro-blog fine-grained sentiment analysis based on multi-feature fusion[J]. Data Analysis and Knowledge Discovery, 2023, 7(12): 102-113. [6] FAN S, LIN C, LI H N, et al. Sentiment-aware word and sentence level pre-training for sentiment analysis[J]. arXiv:2210. 09803, 2022. [7] WANKHADE M, RAO A C S, KULKARNI C. A survey on sentiment analysis methods, applications, and challenges[J]. Artificial Intelligence Review, 2022, 55(7): 5731-5780. [8] WU F Z, HUANG Y F, SONG Y Q, et al. Towards building a high-quality microblog-specific Chinese sentiment lexicon[J]. Decision Support Systems, 2016, 87: 39-49. [9] MOREO A, ROMERO M, CASTRO J L, et al. Lexicon-based comments-oriented news sentiment analyzer system[J]. Expert Systems with Applications, 2012, 39(10): 9166-9180. [10] TRIPATHY A, AGRAWAL A, RATH S K. Classification of sentiment reviews using n-gram machine learning approach[J]. Expert Systems with Applications, 2016, 57: 117-126. [11] WU F Z, HUANG Y F, SONG Y Q. Structured microblog sentiment classification via social context regularization[J]. Neurocomputing, 2016, 175: 599-609. [12] AL AMRANI Y, LAZAAR M, EL KADIRI K E. Random forest and support vector machine based hybrid approach to sentiment analysis[J]. Procedia Computer Science, 2018, 127: 511-520. [13] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746-1751. [14] LIU P F, QIU X P, HUANG X J. Recurrent neural network for text classification with multi-task learning[J]. arXiv:1605. 05101, 2016. [15] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008. [16] YIN D, MENG T, CHANG K W. SentiBERT: a transferable transformer-based architecture for compositional sentiment semantics[J]. arXiv:2005.04114, 2020. [17] TIAN H, GAO C, XIAO X Y, et al. SKEP: sentiment knowledge enhanced pre-training for sentiment analysis[J]. arXiv: 2005.05635, 2020. [18] SUN Y D, ZHU D J, DU H W, et al. Motifs-based recommender system via hypergraph convolution and contrastive learning[J]. Neurocomputing, 2022, 512: 323-338. [19] YAO L, MAO C S, LUO Y. Graph convolutional networks for text classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 7370-7377. [20] LIN Y X, MENG Y X, SUN X F, et al. BertGCN: transductive text classification by combining GNN and BERT[C]//Fin-dings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 1456-1462. [21] WANG Y Z, WANG C X, ZHAN J Y, et al. Text FCG: fusing contextual information via graph learning for text classification[J]. Expert Systems with Applications, 2023, 219: 119658. [22] PHAN H T, NGUYEN N T. A fuzzy graph convolutional network model for sentence-level sentiment analysis[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(5): 2953-2965. [23] LIU W X, ZHANG Z Z, WANG B. Dual-view hypergraph attention network for news recommendation[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108256. [24] DING K Z, WANG J L, LI J D, et al. Be more with less: hypergraph attention networks for inductive text classification[J]. arXiv:2011.00387, 2020. [25] YAN X D, SONG T W, JIAO Y F, et al. Spatio-temporal hypergraph learning for next POI recommendation[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 403-412. [26] NING Q, ZHAO Y M, GAO J, et al. AMHMDA: attention aware multi-view similarity networks and hypergraph learning for miRNA disease associations identification[J]. Briefings in Bioinformatics, 2023, 24(2): bbad094. [27] LI J K, WANG J H, WU L, et al. AMHGCN: adaptive multi-level hypergraph convolution network for human motion prediction[J]. Neural Networks, 2024, 172: 106153. [28] YUAN X, SUN M Y, CHEN Z K, et al. Semantic clustering-based deep hypergraph model for online reviews semantic classification in cyber-physical-social systems[J]. IEEE Access, 2018, 6: 17942-17951. [29] 李全鑫, 庞俊, 朱峰冉. 结合Bert与超图卷积网络的文本分类模型[J]. 计算机工程与应用, 2023, 59(17): 107-115. LI Q X, PANG J, ZHU F R. Text classification method based on integration of Bert and hypergraph convolutional network[J]. Computer Engineering and Applications, 2023, 59(17): 107-115. [30] LE-KHAC P H, HEALY G, SMEATON A F. Contrastive representation learning: a framework and review[J]. IEEE Access, 2020, 8: 193907-193934. [31] KLEIN T, NABI M. miCSE: mutual information contrastive learning for low-shot sentence embeddings[J]. arXiv:2211. 04928, 2022. [32] LI J C, SHANG J B, MCAULEY J. UCTopic: unsupervised contrastive learning for phrase representations and topic mining[J]. arXiv:2202.13469, 2022. [33] GIORGI J, NITSKI O, WANG B, et al. DeCLUTR: deep contrastive learning for unsupervised textual representations[J]. arXiv:2006.03659, 2020. [34] PAN L, HANG C W, SIL A, et al. Improved text classification via contrastive adversarial training[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(10): 11130-11138. [35] WANG D, DING N, LI P J, et al. CLINE: contrastive learning with semantic negative examples for natural language understanding[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 2332-2342. [36] KIM T, YOO K M, LEE S G. Self-guided contrastive learning for BERT sentence representations[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 2528-2540. [37] JIAN Z Q, LI J J, WU Q Q, et al. Retrieval contrastive lear-ning for aspect-level sentiment classification[J]. Information Processing & Management, 2024, 61(1): 103539. [38] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018. [39] LIU Y H, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[J]. arXiv:1907.11692, 2019. [40] FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3558-3565. [41] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [42] LI M, LONG Y, QIN L, et al. Emotion corpus construction based on selection from hashtags[C]//Proceedings of the 10th International Conference on Language Resources and Evaluation, 2016: 1845-1849. [43] 胥桂仙, 刘兰寅, 王家诚, 等. 基于BERT和超图对偶注意力网络的文本情感分析[J]. 计算机应用研究, 2024, 41(3): 786-793. XU G X, LIU L Y, WANG J C, et al. Text sentiment analysis based on BERT and hypergraph with dual attention network[J]. Application Research of Computers, 2024, 41(3): 786-793. [44] 张佳威, 王中卿, 陈嘉沥. 基于文本生成的多粒度评论情感分析[J/OL]. 计算机科学 [2024-08-03]. https://link.cnki.net/urlid/50.1075.tp.20241122.1115.008. ZHANG J W, WANG Z Q, CHEN J L. Multi-grained sentiment analysis of comments based on text generation[J/OL]. Computer Science [2024-08-03]. https://link.cnki.net/urlid/50.1075.tp.20241122.1115.008. [45] CUI Y M, CHE W X, LIU T, et al. Pre-training with whole word masking for Chinese BERT[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 3504-3514. [46] LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[J]. arXiv:1711.05101, 2017. [47] XIAO Z, LIANG P J. Chinese sentiment analysis using bi-directional LSTM with word embedding[C]//Proceedings of the 2nd International Conference on Cloud Computing and Security. Cham: Springer, 2016: 601-610. [48] WANG J L, DING K Z, HONG L J, et al. Next-item recommendation with sequential hypergraphs[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1101-1110. |
| [1] | PANG Jun, MA Zhifen, LIN Xiaoli, WANG Mengxiang. Knowledge Hypergraph Link Prediction Based on GAT and Convolutional Neural Network [J]. Computer Engineering and Applications, 2025, 61(9): 194-201. |
| [2] | YU Bengong, SHI Zhongyu. Deep Attention and Two-Stage Fusion of Image-Text Sentiment Contrastive Learning Method [J]. Computer Engineering and Applications, 2025, 61(3): 223-233. |
| [3] | ZHU Fengran, WANG Huiying, LIN Xiaoli, LI Quanxin, PANG Jun. Non-Uniform Hypergraph Clustering Model Combining Multi-Scale Attention and Dynamic Construction [J]. Computer Engineering and Applications, 2025, 61(2): 200-207. |
| [4] | PANG Jun, MEI Jie, LIN Xiaoli, WANG Mengxiang. Link Prediction in Knowledge Hypergraph Combining Pretrained Model and Hierarchical Attention [J]. Computer Engineering and Applications, 2025, 61(10): 133-144. |
| [5] | WANG Jing, DU Xu, LI Hao, HU Zhuang. Automatic Annotation of Knowledge Points in Picture-Based Educational Resources for Knowledge Scenarios [J]. Computer Engineering and Applications, 2024, 60(24): 119-130. |
| [6] | QI Sheng, GAO Rong, SHAO Xiongkai, WU Xinyun, WAN Xiang, GAO Haiyan. Hypergraph-Based Meta-Path Explanation Contrastive Learning for Group Recommendation [J]. Computer Engineering and Applications, 2024, 60(11): 268-280. |
| [7] | WU Yinghan, TIAN Kuo, LI Mingda, HU Feng. Important Node Recognition in Hypernetworks Based on Node Propagation Entropy [J]. Computer Engineering and Applications, 2023, 59(19): 66-74. |
| [8] | LI Quanxin, PANG Jun, ZHU Fengran. Text Classification Method Based on Integration of Bert and Hypergraph Convolutional Network [J]. Computer Engineering and Applications, 2023, 59(17): 107-115. |
| [9] | YANG Xianpeng, LI Xiaonan, LI Guanyu. Hypergraph Convolutional Networks for User Micro-Behavior Session-Based Recommendation [J]. Computer Engineering and Applications, 2023, 59(16): 108-114. |
| [10] | ZHOU Lina, CHANG Xiao, HU Feng. Using Adjacent Structure Entropy to Determine Vital Nodes of Hypernetwork [J]. Computer Engineering and Applications, 2022, 58(8): 76-82. |
| [11] | HU Renyuan, LIU Jianhua, BU Guannan, ZHANG Dongyang, LUO Yixuan. Research on Sentiment Analysis of Multi-level Semantic Collaboration Model Fused with BERT [J]. Computer Engineering and Applications, 2021, 57(13): 176-184. |
| [12] | LI Jian, XI Wenfeng. Detection Algorithm for Rule Base of Drilling Fluid Design Expert System [J]. Computer Engineering and Applications, 2020, 56(4): 256-261. |
| [13] | LI Zhihui, YANG Lijie. Optimal information rate of hypergraph access structures on five participants [J]. Computer Engineering and Applications, 2015, 51(8): 109-112. |
| [14] | SUN Lingyu1, LENG Ming1,2, ZHU Ping1, LI Jinzhong1. Research of dependent task schedule of cloud computing based on weighted directed hypergraph [J]. Computer Engineering and Applications, 2015, 51(24): 34-39. |
| [15] | WANG Changlong1,2, FENG Zhiyong1, WANG Xin1, RAO Guozheng1. Hybrid approach to atomic decomposition of ontology [J]. Computer Engineering and Applications, 2015, 51(16): 11-16. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||