Important Node Recognition in Hypernetworks Based on Node Propagation Entropy
WU Yinghan, TIAN Kuo, LI Mingda, HU Feng
1.College of Computer, Qinghai Normal University, Qinghai 810008, China
2.The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Qinghai 810008, China
3.Academy of Plateau Science and Sustainability, Qinghai 810008, China
WU Yinghan, TIAN Kuo, LI Mingda, HU Feng. Important Node Recognition in Hypernetworks Based on Node Propagation Entropy[J]. Computer Engineering and Applications, 2023, 59(19): 66-74.
[1] NEWMAN M E J.The structure and function of complex networks[J].SIAM Review,2003,45(2):167-256.
[2] DOROGOVTSEV S N,MENDES J F F.Evolution of networks[J].Advances in Physics,2002,51(4):1079-1187.
[3] STROGATZ S H.Exploring complex networks[J].Nature,2001,410:268-276.
[4] NEUBAUER N,OBERMAYER K.Hyperincident connected components of tagging networks[C]//Proceedings of the 20th ACM Conference on Hypertext and Hypermedia.New York:ACM Press,2009:229-238.
[5] ESTRADA E,RODRíGUEZ-VELáZQUEZ J A.Subgraph centrality and clustering in complex hypernetworks[J].Physica A,2006,364:581-594.
[6] 王志平,王众托.超网络理论及其应用[M].北京:科学出版社,2008:206-222.
WANG Z P,WANG Z T.Hypernetwork theory and its application[M].Beijing:Science Press,2008:206-222.
[7] 郭进利,祝昕昀.超网络中标度律的涌现[J].物理学报,2014,63(9):47-53.
GUO J L,ZHU X Y.Emergence of scaling in hypernetworks[J].Acta Physica Sinica,2014,63(9):47-53.
[8] 郭进利.非均齐超网络中标度律的涌现——富者愈富导致幂律分布吗?[J].物理学报,2014,63(20):402-407.
GUO J L.Emergence of scaling in non-uniform hypernetworks—does “the rich get richer” lead to a power-law distribution?[J].Acta Physica Sinica,2014,63(20):402-407.
[9] 任晓龙,吕琳媛.网络重要节点排序方法综述[J].科学通报,2014,59(13):1175-1197.
REN X L,LYU L Y.Review of ranking nodes in complex networks[J].Chinese Science Bulletin,2014,59(13):1175-1197.
[10] 周丽娜,李发旭,巩云超,等.基于K-shell的超网络关键节点识别方法[J].复杂系统与复杂性科学,2021,18(3):15-22.
ZHOU L N,LI F X,GONG Y C,et al.Identification methods of vital nodes based on K-shell in hypernetworks[J].Complex Systems and Complexity Science,2021,18(3):15-22.
[11] SON F,HEATH E,JEFFERSON B,et al.Hypergraph models of biological networks to identify genes critical to pathogenic viral response[J].BMC Bioinformatics,2021,22(1):287.
[12] KOVALENKO K,ROMANCE M,VASILYEVA E,et al.Vector centrality in networks with higher-order interactions[J].arXiv:2108.13846,2021.
[13] AKTAS M E,NGUYEN T,JAWAID S,et al.Identifying critical higher-order interactions in complex networks[J].arXiv:2105.02763,2021.
[14] XIE M,ZHAN X X,LIU C,et al.An efficient adaptive degree-based heuristic algorithm for influence maximization in hypergraphs[J].Information Processing & Management,2022,60(2):103161.
[15] LAI Q,ZHANG H H.Analysis of identification methods of key nodes in transportation network[J].Chinese Physics B,2022,31(6):68905.
[16] SHANNON C E,WEAVER W.The mathematical theory of communication[M].Urbana,IL:University of IIIinois Press,1949.
[17] MOWSHOWITZ A.Entropy and the complexity of graphs:I.an index of the relative complexity of a graph[J].Bulllletin of Mathematical Biology,1968,30(1):175-204.
[18] CHEN D B,LV L Y,SHANG M S,et al.Identifying influential nodes in complex networks[J].Physica A,2012,391(4):1777-1787.
[19] 张齐.基于熵的复杂网络结构特性研究[D].重庆:西南大学,2017.
ZHANG Q.Structure analysis of complex networks based on entropy[D].Chongqing:Southwest University,2017.
[20] 黄亚丽,霍宥良,王青,等.基于K-阶结构熵的网络异构性研究[J].物理学报,2019,68(1):325-336.
HUANG L Y,HUO Y L,WANG Q,et al.Network heterogeneity based on K-order structure entropy[J].Acta Physica Sinica,2019,68(1):325-336.
[21] WANG M,LI W C,GUO Y N,et al.Identifying influential spreaders in complex networks based on K-shell method[J].Physica A:Statistical Mechanics and Its Applications,2018,499:310-324.
[22] ZHAO J,LEI X.Predicting essential proteins based on second-order neighborhood information and information entropy[J].IEEE Access,2019,7:136012-136022.
[23] 赖强,张宏昊,王徐盱.基于复杂网络理论的城市公交网络鲁棒性分析与优化[J].计算机工程与应用,2022,58(10):249-254.
LAI Q,ZHANG H H,WANG X X.Robustness analysis and optimization of urban public transport network based on complex network theory[J].Computer Engineering and Applications,2022,58(10):249-254.
[24] 田文,方琴,周雪芳,等.航路网络关键节点识别方法研究[J].西南交通大学学报,2022(1):1-10.
TIAN W,FANG Q,ZHOU X F,et al.Research on identification method of key nodes in en-route network[J].Journal of Southwest Jiaotong University,2022(1):1-10.
[25] 王福红,郭进利.超网络的上下熵研究[J].数学的实践与认识,2020,50(22):122-133.
WANG F H,GUO J L.Study on upper and lower entropy of hypernetwork[J].Mathematics in Practice and Theory,2020,50(22):122-133.
[26] 周丽娜,常笑,胡枫.利用邻接结构熵确定超网络关键节点[J].计算机工程与应用,2022,58(8):76-82.
ZHOU L N,CHANG X,HU F.Using adjacent structure entropy to determine vital nodes of hypernetwork[J].Computer Engineering and Applications,2022,58(8):76-82.
[27] BERGE C.Graphs and hypergraphs[M].New York:Elsevier,1973.
[28] 胡枫,刘猛,赵静,等.蛋白复合物超网络特性分析及应用[J].复杂系统与复杂性科学,2018,15(4):31-38.
HU F,LIU M,ZHAO J,et al.Analysis and application of the topological properties of protein complex hypernetworks[J].Complex Systems and Complexity Science,2018,15(4):31-38.
[29] CHEN W H,MINGUEZ P,LERECHER M J,et al.OGEE:an online gene essentially database[J].Nucleic Acids Research,2012,40:901-906.