[1] HUANG J L, SANG G Y, HE W J. Motivation to teach and preparedness for teaching among preservice teachers in China: the effect of conscientiousness and constructivist teaching beliefs[J]. Frontiers in Psychology, 2023, 14: 1116321.
[2] ZHENG L, WANG C, CHEN X, et al. Evolutionary machine learning builds smart education big data platform: data-driven higher education[J]. Applied Soft Computing, 2023, 136: 110114.
[3] PU N, ZHONG Z, SEBE N, et al. A memorizing and generalizing framework for lifelong person re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 2393-2414.
[4] DAVID M, ERIC M, RALPH E. SlideImages: a dataset for educational image classification[C]//Advances in Information Retrieval, 2020: 289-296.
[5] 郭崇慧, 邢小宇, 魏伟. 一种基于二部图的试题知识点标注方法[J]. 运筹与管理, 2021, 30(11): 71-75.
GUO C H, XING X Y, WEI W. A knowledge points labeling method for test questions based on bipartitle graph[J]. Operations Research and Management Science, 2021, 30(11): 71-75.
[6] 魏伟, 郭崇慧, 邢小宇. 基于语义关联规则的试题知识点标注及试题推荐[J]. 数据分析与知识发现, 2020, 4(2/3): 182-191.
WEI W, GUO C H, XING X Y. Annotating knowledge points & recommending questions based on semantic association rules[J]. Data Analysis and Knowledge Discovery, 2020, 4(2/3): 182-191.
[7] PALEKAR V, KUMAR L S. Adaptive optimized residual convolutional image annotation model with bionic feature selection model[J]. Computer Standards & Interfaces, 2024, 87: 103780.
[8] KHATCHATOORIAN A G, JAMZAD M. Suggesting an integration system for image annotation[J]. Multimedia Tools and Applications, 2023, 82: 8323-8343.
[9] ADNAN M M, RAHIM M S M, KHAN A R, et al. An improved automatic image annotation approach using convolutional neural network-slantlet transform[J] IEEE Access, 2022, 10: 7520-7532.
[10] LI K H, HUANG Z H, JIA Z H, et al. RAHG: a role-aware hypergraph neural network for node classification in graphs[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(4): 2098-2108.
[11] TEE YY, HONG X N, CHENG D R, et al. Patch-based adversarial training for error-aware circuit annotation of delayered IC images[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(9): 3694-3698.
[12] CHEN Y T, LIU L W, TAO J J, et al. The image annotation algorithm using convolutional features from intermediate layer of deep learning[J]. Multimedia Tools and Applications, 2021, 80(3): 4237-4261.
[13] 郭崇慧, 吕征达. 一种基于集成学习的试题多知识点标注方法[J]. 运筹与管理, 2020, 29(2): 129-136.
GUO C H, LV Z D. A multi knowledge points labeling methhod for test questions based on ensemble learning[J]. Operations Research and Management Science, 2020, 29(2): 129-136.
[14] 夏盟. 基于机器解答的物理电路学习资源标注与呈现研究[D]. 武汉: 华中师范大学, 2019.
XIA M. Research on annotation and representation of circuit learning resources based on automatic problem solving[D]. Wuhan: Central China Normal University, 2019.
[15] 邢小宇. 基于文本挖掘的试题知识点和认知动词标注方法研究[D]. 大连: 大连理工大学, 2020.
XING X Y. Research on labeling mthods of knowledge points and cognotive verbs for test questions based on text mining[D]. Dalian: Dalian University of Technology, 2020.
[16] 何鑫宇. 基于多标签的数学试题自动标注研究[D]. 天津: 天津师范大学, 2023.
HE X Y. Research on automatic annotation of mathematical question based on multiple labels[D]. Tianjin: Tianjin Normal University, 2023.
[17] 王晓璐. 面向K12数学的试题知识点自动标注研究[D]. 上海: 华东师范大学, 2022.
WANG X L. Research on automatic labeling of knowledge points for questions in K12 mathematics[D]. Shanghai: East China Normal University, 2022.
[18] HAN Z C, XU A F. Microsystems. ecological evolution path of smart education platform based on deep learning and image detection[J]. Microprocessors and Microsystems, 2021, 80: 103343.
[19] SHI D M, TANG H Y. A new multiface target detection algorithm for students in class based on Bayesian optimized YOLOv3 model[J]. Journal of Electrical and Computer Engineering, 2022(1): 4260543.
[20] DASS S, GARY K, CUNNINGHAM J. Predicting student dropout in self-paced MOOC course using random forest model[J]. Information, 2021, 12(11): 476.
[21] WANG Y X, SONG J M, WEI M J, et al. Predicting potential drug-disease associations based on hypergraph learning with subgraph matching[J]. Interdisciplinary Sciences-Computational Life Sciences, 2023, 15(2): 249-261.
[22] HAN J D, TAO Q, TANG Y F, et al. DH-HGCN: dual homogeneity hypergraph convolutional network for multiple social recommendations[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022: 2190-2194.
[23] XIAO Q G, LI G Y, CHEN Q C, et al. Complex image classification by feature inference[J]. Neurocomputing, 2023, 544: 126231.
[24] ZHOU Y, ZHENG H X, HUANG X, et al. Graph neural networks: taxonomy, advances, and trends[J]. ACM Transactions on Intelligent Systems and Technology, 2022, 13(1): 1-54.
[25] WU F, JING X Y, WEI P F, et al. Semi-supervised multi-view graph convolutional networks with application to webpage classification[J]. Information Sciences, 2022, 591: 142-154.
[26] FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 3558-3565.
[27] JIANG J W, WEI Y X, FENG Y F, et al. Dynamic hypergraph neural networks[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019: 2635-2641.
[28] BAI S, ZHANG F H, PHILIP H S T. Hypergraph convolution and hypergraph attention[J]. Pattern Recognition, 2021, 110: 107637.
[29] JI J Z, REN Y T, LEI M L. FC-HAT: hypergraph attention network for functional brain network classification[J]. Information Sciences, 2022, 608: 1301-1316.
[30] LIU Q S, SUN Y B, WANG C T, et al. Elastic net hypergraph learning for image clustering and semi-supervised classification[J]. IEEE Transactions on Image Processing, 2016, 26(1): 452-463.
[31] TANG C, LIU X W, WANG P C, et al. Adaptive hypergraph embedded semi-supervised multi-label image annotation[J]. IEEE Transactions on Multimedia, 2019, 21(11): 2837-2849.
[32] WU X P, CHEN Q C, LI W, et al. AdaHGNN: adaptive hypergraph neural networks for multi-label image classification[J]. ACM Multimedia, 2020: 284-293.
[33] CAI Y M, ZHANG Z J, CAI Z H, et al. Hypergraph-structured autoencoder for unsupervised and semisupervised classification of hyperspectral image[J]. IEEE Geoscience Remote Sensing Letters, 2021, 19: 1-5.
[34] DENG Q W, ZHANG S Y, DING Z. An efficient hypergraph approach to robust point cloud resampling[J]. IEEE Transactions on Image Processing, 2022, 31: 1924-1937.
[35] REN S Q, HE K M, ROSS B, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015: 91-99.
[36] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Representations (ICLR), 2015.
[37] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[38] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
[39] HUANG G, LIU Z, LAURENS V D M, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[40] ALEXEY D, LUCAS B, ALEXANDER K, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]//Proceedings of the International Conference on Learning Representations, 2021.
[41] STEPHANE D, HUGO T, MATTHEW L L, et al. ConViT: improving vision transformers with soft convolutional inductive biases[C]//Proceedings of the International Conference on Machine Learning, 2021: 2286-2296.
[42] HONG D F, GAO L R, WU J, et al. Graph convolutional networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience Remote Sensing, 2021, 59(7): 5966-5978.
[43] FU X Y, XIAO J, ZHU Y R, et al. Continual image deraining with hypergraph convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 9534-9551. |