
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (4): 211-221.DOI: 10.3778/j.issn.1002-8331.2309-0439
• Graphics and Image Processing • Previous Articles Next Articles
WANG Weihang, ZHANG Yi
Online:2025-02-15
Published:2025-02-14
王炜航,张轶
WANG Weihang, ZHANG Yi. MLDAC:Multi-Task Dense Attention Computation Self-Supervised Few-Shot Semantic Segmentation Method[J]. Computer Engineering and Applications, 2025, 61(4): 211-221.
王炜航, 张轶. MLDAC:多任务密集注意计算自监督小样本分割方法[J]. 计算机工程与应用, 2025, 61(4): 211-221.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2309-0439
| [1] YAO Y, CHEN T, XIE G S, et al. Non-salient region object mining for weakly supervised semantic segmentation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2623-2632. [2] TRUONG T D, LE N, RAJ B, et al. Fredom: fairness domain adaptation approach to semantic scene understanding[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 19988-19997. [3] XIE G S, XIONG H, LIU J, et al. Few-shot semantic segmentation with cyclic memory network[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 7293-7302. [4] 韦婷, 李馨蕾, 刘慧. 小样本困境下的图像语义分割综述[J]. 计算机工程与应用, 2023, 59(2): 1-11. WEI T, LI X L, LIU H. Survey on image semantic segmentation in dilemma of few-shot[J]. Computer Engineering and Applications, 2023, 59(2): 1-11. [5] LU Z, HU S, ZHU X, et al. Simpler is better: few-shot semantic segmentation with classifier weight transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 8741-8750. [6] AMAC M S, SENCAN A, BARAN B, et al. MaskSplit: self-supervised meta-learning for few-shot semantic segmentation[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, 2022: 1067-1077. [7] KARIMIJAFARBIGLOO S, AZAD R, MERHOF D. Self-supervised few-shot learning for semantic segmentation: an annotation-free approach[J]. arXiv:2307.14446, 2023. [8] SHABAN A, BANSAL S, LIU Z, et al. One-shot learning for semantic segmentation[J]. arXiv:1709.03410, 2017. [9] ZHUGE Y, SHEN C. Deep reasoning network for few-shot semantic segmentation[C]//Proceedings of the 29th ACM International Conference on Multimedia, 2021: 5344-5352. [10] LIU L, CAO J, LIU M, et al. Dynamic extension nets for few-shot semantic segmentation[C]//Proceedings of the 28th ACM International Conference on Multimedia, 2020: 1441-1449. [11] ZHOU T, WANG W, KONUKOGLU E, et al. Rethinking semantic segmentation: a prototype view[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 2582-2593. [12] WANG W, ZHOU T, YU F, et al. Exploring cross-image pixel contrast for semantic segmentation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 7303-7313. [13] WANG K, LIEW J H, ZOU Y, et al. PANet: few-shot image semantic segmentation with prototype alignment[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 9197-9206. [14] ZHANG C, LIN G, LIU F, et al. CANet: class-agnostic segmentation networks with iterative refinement and attentive few-shot learning[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5217-5226. [15] LANG C, CHENG G, TU B, et al. Learning what not to segment: a new perspective on few-shot segmentation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 8057-8067. [16] LIU Y, ZHANG X, ZHANG S, et al. Part-aware prototype network for few-shot semantic segmentation[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 142-158. [17] YANG B, WAN F, LIU C, et al. Part-based semantic transform for few-shot semantic segmentation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(12): 7141-7152. [18] YANG Y, CHEN Q, FENG Y, et al. MIANet: aggregating unbiased instance and general information for few-shot semantic segmentation[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7131-7140. [19] ZHANG C, LIN G, LIU F, et al. Pyramid graph networks with connection attentions for region-based one-shot semantic segmentation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 9587-9595. [20] WANG H, ZHANG X, HU Y, et al. Few-shot semantic segmentation with democratic attention networks[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 730-746. [21] LIU B, JIAO J, YE Q. Harmonic feature activation for few-shot semantic segmentation[J]. IEEE Transactions on Image Processing, 2021, 30: 3142-3153. [22] VAN GANSBEKE W, VANDENHENDE S, GEORGOULIS S, et al. Unsupervised semantic segmentation by contrasting object mask proposals[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 10052-10062. [23] 张钰, 刘建伟, 左信. 多任务学习[J]. 计算机学报, 2020, 43(7): 1340-1378. ZHANG Y, LIU J, ZUO X W. Survey of multi-task learning[J]. Chinese Journal of Computers, 2020, 43(7): 1340-1378. [24] XU Y, LI X, YUAN H, et al. Multi-task learning with multi-query transformer for dense prediction[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(2): 1228-1240. [25] BHATTACHARJEE D, ZHANG T, SüSSTRUNK S, et al. MulT: an end-to-end multitask learning transformer[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 12031-12041. [26] CHENG J, LIU J, KUANG H, et al. A fully automated multimodal MRI-based multi-task learning for glioma segmentation and IDH genotyping[J]. IEEE Transactions on Medical Imaging, 2022, 41(6): 1520-1532. [27] CHOWDARY J, YOGARAJAH P, CHAURASIA P, et al. A multi-task learning framework for automated segmentation and classification of breast tumors from ultrasound images[J]. Ultrasonic Imaging, 2022, 44(1): 3-12. [28] LIU H, PENG P, CHEN T, et al. FECANet: boosting few-shot semantic segmentation with feature-enhanced context-aware network[J]. IEEE Transactions on Multimedia, 2023, 25: 8580-8592. [29] YANG X, WANG B, CHEN K, et al. BRINet: towards bridging the intra-class and inter-class gaps in one-shot segmentation[J]. arXiv:2008.06226, 2020. [30] TIAN P, WU Z, QI L, et al. Differentiable meta-learning model for few-shot semantic segmentation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12087-12094. [31] BOUDIAF M, KERBADEC H, MASUD Z I, et al. Few-shot segmentation without meta-learning: a good transductive inference is all you need?[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13979-13988. [32] WU Z, SHI X, LIN G, et al. Learning meta-class memory for few-shot semantic segmentation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 517-526. [33] LI G, KANG G, LIU W, et al. Content-consistent matching for domain adaptive semantic segmentation[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 440-456. [34] SUBHANI M N, ALI M. Learning from scale-invariant examples for domain adaptation in semantic segmentation[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 290-306. [35] WEN X, ZHAO B, ZHENG A, et al. Self-supervised visual representation learning with semantic grouping[C]//Advances in Neural Information Processing Systems 35, 2022: 16423-16438. [36] ARASLANOV N, ROTH S. Self-supervised augmentation consistency for adapting semantic segmentation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 15384-15394. [37] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017. [38] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020. [39] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022. [40] SUN G, LIU Y, LIANG J, et al. Boosting few-shot semantic segmentation with transformers[J]. arXiv:2108.02266, 2021. [41] ZHANG G, KANG G, YANG Y, et al. Few-shot segmentation via cycle-consistent transformer[C]//Advances in Neural Information Processing Systems 34, 2021: 21984-21996. [42] LIU Y, LIU N, YAO X, et al. Intermediate prototype mining transformer for few-shot semantic segmentation[C]//Advances in Neural Information Processing Systems 35, 2022: 38020-38031. [43] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125. [44] MIN J, KANG D, CHO M. Hypercorrelation squeeze for few-shot segmentation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 6941-6952. [45] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88: 303-338. [46] HARIHARAN B, ARBELAEZ P, BOURDEV L, et al. Semantic contours from inverse detectors[C]//Proceedings of the 2011 International Conference on Computer Vision, 2011: 991-998. [47] LIN T Y, MAIRE M, BELLONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755. [48] LI X, WEI T, CHEN Y P, et al. FSS-1000: a 1000-class dataset for few-shot segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2869-2878. [49] YANG L, ZHUO W, QI L, et al. Mining latent classes for few-shot segmentation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 8721-8730. |
| [1] | XU Chundong, WU Ziyu, GE Fengpei. Review of Speech Recognition Techniques for Low Data Resources [J]. Computer Engineering and Applications, 2025, 61(4): 59-71. |
| [2] | WANG Xinlei, WANG Shuo, ZHAI Jiazheng, XIAO Ruilin, LIAO Chenxu. Object Detection Algorithm of Aerial Image in Complex Weather Based on Multi-Task Joint Learning [J]. Computer Engineering and Applications, 2025, 61(2): 97-111. |
| [3] | CHEN Peng, DENG Miaolei, FAN Haoyi, ZHANG Dexian, HAN Han. Self-Supervised Atrial Fibrillation Anomaly Detection Method Guided by Electrocardiogram Features [J]. Computer Engineering and Applications, 2025, 61(2): 208-218. |
| [4] | ZOU Zhentao, LI Zeping. Improved YOLOv7 for UAV Image Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 173-181. |
| [5] | FANG Hong, LI Desheng, JIANG Guangjie. Efficient Cross-Domain Transformer Few-Shot Semantic Segmentation Network [J]. Computer Engineering and Applications, 2024, 60(4): 142-152. |
| [6] | ZHAO Shaohui, MA Xiao, WANG Jianxia. Graph Autoencoder Framework Combining Path Masking and Dual Decoder [J]. Computer Engineering and Applications, 2024, 60(24): 140-148. |
| [7] | LI Yajie, TANG Guogen, LI Ping. DPMN:Multi-Task Learning Network for Problem of Overlapping Relation Extraction [J]. Computer Engineering and Applications, 2024, 60(20): 160-167. |
| [8] | WANG Xuemin, BAO Xuguang, CHANG Liang, HAO Yuanjing. Towards Related Background Knowledge Acquisition via Counterfactual [J]. Computer Engineering and Applications, 2024, 60(20): 168-179. |
| [9] | WANG Lulu, XU Zengmin, ZHANG Xuelian, MENG Ruxing, LU Tao. Cross-View Temporal Contrastive Learning for Self-Supervised Video Representation [J]. Computer Engineering and Applications, 2024, 60(18): 158-166. |
| [10] | XU Yunfeng, FAN Hexun. Self-Supervised Graph Representation Learning Method Based on Data and Feature Augmentation [J]. Computer Engineering and Applications, 2024, 60(17): 148-157. |
| [11] | LI Junjie, YI Shi, HE Runhua, LIU Xi. Semantic Segmentation Method of UAV Image Based on Window Attention Aggregation Swin Transformer [J]. Computer Engineering and Applications, 2024, 60(15): 198-210. |
| [12] | ZHU Shenghao, QIAN Chengshan, KAN Xi. High-Precision Fall Detection Algorithm with Improved YOLOv5 [J]. Computer Engineering and Applications, 2024, 60(11): 105-114. |
| [13] | SHE Xiangyang, LIU Zhe, DONG Lihong. Text Detection Algorithm Based on Multi-Scale Attention Feature Fusion [J]. Computer Engineering and Applications, 2024, 60(1): 198-206. |
| [14] | LIN Wenlong, Alifu·Kuerban, CHEN Yixiao, YUAN Xu. ACFEM-RetinaNet Algorithm for Remote Sensing Image Target Detection [J]. Computer Engineering and Applications, 2024, 60(1): 245-253. |
| [15] | ZHANG Zhaoyang, ZHANG Shang, WANG Hengtao, RAN Xiukang. Multi-Head Attention Detection of Small Targets in Remote Sensing at Multiple Scales [J]. Computer Engineering and Applications, 2023, 59(8): 227-238. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||