[1] WANG F Y, GAO X Y, CHEN ZH Y, et al. Contrastive multi-level graph neural networks for session-based recommendation[J]. IEEE Transactions on Multimedia, 2023, 25: 9278-9289.
[2] 王利娥, 李东城, 李先贤. 基于跨域关联与隐私保护的深度推荐模型[J]. 软件学报, 2023, 34(7): 3365-3384.
WANG L E, LI D C, LI X X. Deep recommendation model with cross-domain association and privacy protection[J]. Journal of Software, 2023, 34(7): 3365-3384.
[3] 刘鑫, 梅红岩, 王嘉豪, 等. 图神经网络推荐方法研究[J]. 计算机工程与应用, 2022, 58(10): 41-49.
LIU X, MEI H Y, WANG J H, et al. Research on graph neural network recommendation method[J]. Computer Engineering and Applications, 2022, 58(10): 41-49.
[4] 李宇琦, 陈维政, 闫宏飞, 等. 基于网络表示学习的个性化商品推荐[J]. 计算机学报, 2019, 42(8): 1767-1778.
LI Y Q, CHEN W Z, YAN H F, et al. Learning graph-based embedding for personalized product recommendation[J]. Chinese Journal of Computers, 2019, 42(8): 1767-1778.
[5] WEI W, HUANG C, XIA L H, et al. Contrastive meta learning with behavior multiplicity for recommendation[C]//Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, 2022: 1120-1128.
[6] CHEN C, MA W Z, ZHANG M, et al. Graph heterogeneous multi-relational recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 3958-3966.
[7] HE T Q, LI K Y, CHEN S, et al. DMBIN: a dual multi-behavior interest network for click-through rate prediction via contrastive learning[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023: 1366-1375.
[8] MENG C, ZHAO Z Q, GUO W, et al. Coarse-to-fine knowledge-enhanced multi-interest learning framework for multi-behavior recommendation[J]. ACM Transactions on Information Systems, 2023, 42(1): 1-27.
[9] 赵容梅, 孙思雨, 鄢凡力, 等. 基于对比学习的多兴趣感知序列推荐系统[J]. 计算机研究与发展, 2024, 61(7): 1730-1740.
ZHAO R M, SUN S Y, YAN F L, et al. Multi-interest aware sequential recommender system based on contrastive learning[J]. Journal of Computer Research and Development, 2024, 61(7): 1730-1740.
[10] JIN B, CHEN G, HE G N, et al. Multi-behavior recommendation with graph convolutional networks[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020: 659-668.
[11] XU J C, WANG C K, WU C, et al. Multi-behavior self-supervised learning for recommendation[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023: 496-505.
[12] YAN M S, CHENG Z Y, GAO C, et al. Cascading residual graph convolutional network for multi-behavior recommendation[J]. ACM Transactions on Information Systems, 2024, 42(1): 1-26.
[13] ZHANG S Z, CHEN L Y, WANG C, et al. Temporal graph contrastive learning for sequential recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 9359-9367.
[14] BIN C Z, LI W L, WU F J, et al. Multi-behavior-based graph contrastive learning recommendation[J]. Knowledge and Information Systems, 2024, 66: 3477-3496.
[15] KOREN Y, BELL R M, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37.
[16] DESHPANDE M, KARYPIS G. Item-based top-N recommendation algorithms[J]. ACM Transactions on Information Systems (TOIS), 2004, 22(1): 143-177.
[17] HE X N, HE Z K, SONG J K, et al. NAIS: neural attentive item similarity model for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(12): 2354-2366.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5998-6008.
[19] KINGMA D P, WELLING M. Auto-encoding variational bayes[C]//Proceedings of the International Conference on Learning Representations, 2014: 14-16.
[20] OORD A V D, LI Y Z, VINYALS O. Representation learning with contrastive predictive coding[J]. arXiv:1807. 03748, 2018.
[21] ALHARBE N, RAKROUKI M A, ALIJOHANI A. A collaborative filtering recommendation algorithm based on embedding representation[J]. Expert Systems with Applications, 2023, 215: 119380.
[22] WANG R Q, WU Z D, LOU J G, et al. Attention-based dynamic user modeling and deep collaborative filtering recommendation[J]. Expert Systems with Applications, 2022, 188: 116036.
[23] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[24] PARK H S, JUN C H. A simple and fast algorithm for K-medoids clustering[J]. Expert Systems with Applications, 2009, 36(2): 3336-3341.
[25] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010: 807-814.
[26] CHO J S, HYUN D M, LIM D W, et al. Dynamic multi-behavior sequence modeling for next item recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 4199-4207.
[27] CHENG Z Y, HAN S, LIU F, et al. Multi-behavior recommendation with cascading graph convolution networks[C]//Proceedings of the ACM Web Conference 2023 (WWW’23), 2023: 1181-1189.
[28] WANG J, REN J T. Graphormer based contrastive learning for recommendation[J]. Applied Soft Computing, 2024, 159: 111626. |