[1] KUMAR V, SHARMA K V, CALOIERO T, et al. Comprehensive overview of flood modeling approaches: a review of recent advances[J]. Hydrology, 2023, 10(7): 141.
[2] SAHOO D P, SAHOO B, TIWARI M K, et al. Integrated remote sensing and machine learning tools for estimating ecological flow regimes in tropical river reaches[J]. Journal of Environmental Management, 2022, 322: 116121.
[3] HALDER B, BARMAN S, BANIK P, et al. Large-scale flood hazard monitoring and impact assessment on landscape: representative case study in India[J]. Sustainability, 2023, 15(14): 11413.
[4] MCFEETERS S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7): 1425-1432.
[5] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5): 589-595.
XU H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5): 589-595.
[6] 陈文倩, 丁建丽, 李艳华, 等. 基于国产GF-1遥感影像的水体提取方法[J]. 资源科学, 2015, 37(6): 1166-1172.
CHEN W Q, DING J L, LI Y H, et al. Extraction of water information based on China-made GF-1 remote sense image[J]. Resources Science, 2015, 37(6): 1166-1172.
[7] BALáZS B, BíRó T, DYKE G, et al. Extracting water-related features using reflectance data and principal component analysis of Landsat images[J]. Hydrological Sciences Journal, 2018, 63(2): 269-284.
[8] LIU Q H, HUANG C, SHI Z L, et al. Probabilistic river water mapping from landsat-8 using the support vector machine method[J]. Remote Sensing, 2020, 12(9): 1374.
[9] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
[10] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[11] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[12] DUAN L H, HU X Y. Multiscale refinement network for water-body segmentation in high-resolution satellite imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(4): 686-690.
[13] WANG J J, ZHENG Z, MA A L, et al. LoveDA: a remote sensing land-cover dataset for domain adaptive semantic segmentation[J]. arXiv:2110.08733, 2021.
[14] OSCO L P, WU Q S, DE LEMOS E L, et al. The segment anything model (SAM) for remote sensing applications: from zero to one shot[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 124: 103540.
[15] GAL R, ARAR M, ATZMON Y, et al. Encoder-based domain tuning for fast personalization of text-to-image models[J]. ACM Transactions on Graphics, 2023, 42(4): 1-13.
[16] WANG X L, YU Z D, DE MELLO S, et al. FreeSOLO: learning to segment objects without annotations[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14156-14166.
[17] LAZAROW J, LEE K, SHI K Y, et al. Learning instance occlusion for panoptic segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10717-10726.
[18] ZHOU C, LI Q, LI C, et al. A comprehensive survey on pretrained foundation models: a history from BERT to ChatGPT[J]. arXiv:2302.09419, 2023.
[19] MBOGA N, GEORGANOS S, GRIPPA T, et al. Fully convolutional networks and geographic object-based image analysis for the classification of VHR imagery[J]. Remote Sensing, 2019, 11(5): 597.
[20] ZHANG G, LEI T, CUI Y, et al. A dual-path and lightweight convolutional neural network for high-resolution aerial image segmentation[J]. ISPRS International Journal of Geo-Information, 2019, 8(12): 582.
[21] LIAO M H, ZOU Z S, WAN Z Y, et al. Real-time scene text detection with differentiable binarization and adaptive scale fusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 919-931.
[22] ZHOU H Y, GUO J S, ZHANG Y H, et al. nnFormer: volumetric medical image segmentation via a 3D transformer[J]. IEEE Transactions on Image Processing, 2023, 32: 4036-4045.
[23] LYU X, JIANG W X, LI X, et al. MSAFNet: multiscale successive attention fusion network for water body extraction of remote sensing images[J]. Remote Sensing, 2023, 15(12): 3121.
[24] CHEN J N, LU Y Y, YU Q H, et al. TransUNet: transformers make strong encoders for medical image segmentation[J]. arXiv:2102.04306, 2021.
[25] WANG L B, LI R, ZHANG C, et al. UNetFormer: a UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 196-214. |