Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (7): 61-80.DOI: 10.3778/j.issn.1002-8331.2405-0371

• Research Hotspots and Reviews • Previous Articles     Next Articles

Review of Research on Unmanned Aerial Vehicle Autonomous Inspection Algorithms for Railway Facilities

ZHAI Huiying, HAO Han, LI Junli, ZHAN Zhifeng   

  1. 1.College of Computer Science, Sichuan Normal University, Chengdu 610101, China
    2.School of Artificial Intelligence, Zhengzhou Railway Vocational and Technical College, Zhengzhou 450018, China
    3.Ministry of Public Work, China Railway Zhengzhou Bureau Group Co., Ltd., Zhengzhou 450052, China
  • Online:2025-04-01 Published:2025-04-01

铁路设施无人机自主巡检算法研究综述

翟慧英,郝汉,李均利,占志峰   

  1. 1.四川师范大学 计算机科学学院,成都 610101
    2.郑州铁路职业技术学院 人工智能学院,郑州 450018
    3.中国铁路郑州局集团有限公司 工务部,郑州 450052

Abstract: In the field of railway maintenance and safety monitoring, drone inspections are seen as an efficient method that accelerates the development of new productive forces. Current research mainly focuses on autonomous inspection algorithms for specific railway facilities, with few comprehensive reviews available. This paper systematically analyzes and summarizes drone autonomous inspection algorithms for railway facilities. It first outlines the current scenarios and challenges in railway drone inspections, then analyzes the unique issues in various scenarios, summarizing recent research on inspection algorithms. The analysis shows that most studies focus on detecting foreign object intrusion and track fastener defects, while research on tunnels and flood prevention is relatively lacking. The paper also compiles publicly available railway-related datasets and organizes evaluation metrics in terms of accuracy, speed, and complexity. Finally, it discusses future research directions in this field, aiming to provide valuable reference and guidance for researchers.

Key words: deep learning, railway inspection, unmanned aerial vehicle (UAV), object detection, semantic segmentation

摘要: 在铁路维护与安全监测领域,无人机巡检作为一种高效且能够加快发展新质生产力的方式被业界看好。现有成果多聚焦于铁路某一具体设施场景下无人机自主巡检算法的研究,综述性文章并不多见。基于此,对铁路设施无人机自主巡检算法进行系统性分析总结。归纳了当前铁路无人机自主巡检的场景和难点,分析了无人机自主巡检在各个场景下的特有问题,对近年来巡检算法研究进行总结归纳。从分析结果来看,现有研究多侧重于异物入侵和轨道扣件等缺陷的检测,而隧道和水害防治等领域的研究则相对不足。汇总了现公开的铁路相关数据集,并对评价指标从精度、速度、复杂度进行整理,对该领域未来研究方向进行展望。以期该项工作为相关领域的研究者提供宝贵的参考和指导。

关键词: 深度学习, 铁路巡检, 无人机, 目标检测, 语义分割