[1] KUYPERS M, MAILLART T, PATé-CORNELL E. An empirical analysis of cyber security incidents at a large organization[EB/OL]. (2016-02-24)[2024-01-21]. https://fsi.stanford.edu/publication/empirical-analysis-cyber-security-incidents-large-organization.
[2] GEYER R C, KLEIN T, NABI M. Differentially private federated learning: a client level perspective[J]. arXiv:1712. 07557, 2017.
[3] YANG Q, LIU Y, CHEN T. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 1-19.
[4] BONAWITZ K, EICHNER H, GRIESKAMP W, et al. Towards federated learning at scale: system design[J]. arXiv:1902. 01046, 2019.
[5] MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 2017: 1273-1282.
[6] SAMARAKOON S, BENNIS M, SAAD W, et al. Distributed federated learning for ultra-reliable low-latency vehicular communications[J]. IEEE Transactions on Communications, 2019, 68(2): 1146-1159.
[7] KAIROUZ P, MCMAHAN H B, AVENT B, et al. Advances and open problems in federated learning[J]. arXiv:1912. 04977, 2019.
[8] LI T, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[J]. arXiv:1812.06127, 2018.
[9] SIVANATHAN A, SHERRATT D, GHARAKHEILI H H, et al. Characterizing and classifying IoT traffic in smart cities and campuses[C]//Proceedings of the 2017 IEEE Conference on Computer Communications Workshops, 2017: 559-564.
[10] BEZAWADA B, BACHANI M, PETERSON J, et al. Behavioral fingerprinting of IoT devices[C]//Proceedings of the 2018 Workshop on Attacks and Solutions in Hardware Security, 2018: 41-50.
[11] BREMLER-BARR A, LEVY H, YAKHINI Z. IoT or NoT: identifying IoT devices in a short time scale[C]//Proceedings of the 2020 IEEE/IFIP Network Operations and Management Symposium, 2020: 1-9.
[12] LOPEZ-MARTIN M, CARRO B, SANCHEZ-ESGUEVILLAS A, et al. Network traffic classifier with convolutional and recurrent neural networks for internet of things[J]. IEEE Access, 2017, 5: 18042-18050.
[13] MIETTINEN M, MARCHAL S, HAFEEZ I, et al. IoT SENTINEL: automated device?type identification for security enforcement in IoT[C]//Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems, 2017: 2177-2184.
[14] MEIDAN Y, BOHADANA M, SHABTAI A, et al. Detection of unauthorized IoT devices using machine learning techniques[J]. arXiv:1709.04647, 2017.
[15] LI T, SAHU A K, TALWALKAR A, et al. Federated learning: challenges, methods, and future directions[J]. IEEE Signal Processing Magazine, 2020, 37(3): 50-60.
[16] BARAL P, YANG N, WENG N. IoT device identification using device fingerprint and deep learning[M]//Deep learning and reinforcement learning. Cham: Springer, 2023.
[17] CHOWDHURY R R, IDRIS A C, ABAS P E. A deep learning approach for classifying network connected IoT devices using communication traffic characteristics[J]. Journal of Network and Systems Management, 2023, 31(1): 26.
[18] SHENOY M V, FedDI: a novel privacy preserving horizontal federated learning based scheme for IoT device identification[J]. Journal of Network and Computer Applications, 2023, 214: 103616.
[19] WANG H, EKLUND D, OPREA A, et al. FL4IoT: IoT device fingerprinting and identification using federated learning[J]. ACM Transactions on Internet of Things, 2023, 4(3): 1-24.
[20] ACAR D A E, ZHAO Y, NAVARRO R M, et al. Federated learning based on dynamic regularization[J]. arXiv:2111. 04263, 2021.
[21] SHOHAM N, AVIDOR T, KEREN A, et al. Overcoming forgetting in federated learning on Non-IID data[J]. arXiv:1910.07796, 2019.
[22] KARIMIREDDY S P, KALE S, MOHRI M, et al. Scaffold: stochastic controlled averaging for federated learning[C]//Proceedings of the International Conference on Machine Learning, 2020: 5132-5143.
[23] WANG J, LIU Q, LIANG H, et al. Tackling the objective inconsistency problem in heterogeneous federated optimization[C]//Advances in Neural Information Processing Systems, 2020: 7611-7623.
[24] LI X C, ZHAN D C. FedRS: federated learning with restricted softmax for label distribution Non-IID data[C]//Proceedings of the 27th ACM Conference on Knowledge Discovery & Data Mining, 2021: 995-1005.
[25] LIN T, KONG L, STICH S U, et al. Ensemble distillation for robust model fusion in federated learning[C]//Advances in Neural Information Processing Systems, 2020: 2351-2363.
[26] SUN L, LYU L. Federated model distillation with noise-free differential privacy[J]. arXiv:2009.05537, 2020.
[27] LI D, WANG J. FedMD: heterogenous federated learning via model distillation[J]. arXiv:1910.03581, 2019.
[28] SATTLER F, KORJAKOW T, RISCHKE R, et al. FedAUX: leveraging unlabeled auxiliary data in federated learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(9): 5531-5543.
[29] YOON T, SHIN S, HWANG S J, et al. FedMIX: approximation of mixup under mean augmented federated learning[J]. arXiv:2107.00233, 2021.
[30] SEO H, PARK J, OH S, et al. Federated knowledge distillation[J]. arXiv:2011.02367, 2020.
[31] YAO D, PAN W, DAI Y, et al. FedGKD: towards heterogeneous federated learning via global knowledge distillation[J]. IEEE Transactions on Computers, 2023, 73(1): 3-17.
[32] 唐跃中, 卢士达, 钱李烽, 等. IDFE: 面向物联网设备识别的指纹深度提取方法[J]. 计算机工程与应用, 2024, 60(17): 117-128.
TANG Y Z, LU S D, QIAN L F, et al. IDFE: fingerprint deep extraction method for IoT device identification[J]. Computer Engineering and Applications, 2024, 60(17): 117-128.
[33] NOGUCHI H, DEMIZU T, HOSHIKAWA N, et al. Autonomous device identification architecture for internet of things[C]//Proceedings of the 2018 IEEE 4th World Forum on Internet of Things, 2018: 407-411.
[34] WANG W, ZHU M, ZENG X, et al. Malware traffic classification using convolutional neural network for representation learning[C]//Proceedings of the 2017 International Conference on Information Networking, 2017: 712-717.
[35] TOLSTIKHIN I O, HOULSBY N, KOLESNIKOV A, et al. MLP-Mixer: an all-MLP architecture for vision[C]//Advances in Neural Information Processing Systems, 2021: 24261-24272.
[36] KITAEV N, KAISER ?, LEVSKAYA A. Reformer: the efficient transformer[J]. arXiv:2001.04451, 2020.
[37] BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arXiv:1803.01271, 2018.
[38] MARCHAL S, MIETTINEN M, NGUYEN T D, et al. AuDI: toward autonomous IoT device-type identification using periodic communication[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(6): 1402-1412.
[39] BIKMUKHAMEDOV R F, NADEEV A F. Multi-class network traffic generators and classifiers based on neural networks[C]//Proceedings of the 2021 Systems of Signals Generating and Processing in the Field of on Board Communications, 2021: 1-7.
[40] YIN F, YANG L, MA J, et al. Identifying IoT devices based on spatial and temporal features from network traffic[J]. Security and Communication Networks, 2021, 2021: 1-16.
[41] ZHU Z, HONG J, ZHOU J. Data-free knowledge distillation for heterogeneous federated learning[C]//Proceedings of the International Conference on Machine Learning, 2021: 12878-12889.
[42] FRANKLIN J, MCCOY D, TABRIZ P, et al. Passive data link layer 802. 11 wireless device driver fingerprinting[C]//Proceedings of the 15th Conference on USENIX Security Symposium, 2006: 16-89.
[43] ALRAWI O, LEVER C, ANTONAKAKIS M, et al. SoK: security evaluation of home-based IoT deployments[C]//Proceedings of the 2019 IEEE Symposium on Security and Privacy, 2019: 1362-1380.
[44] CHARYYEV B, GUNES M H. IoT traffic flow identification using locality sensitive hashes[C]//Proceedings of the 2020 IEEE International Conference on Communications, 2020: 1-6.
[45] REN J, DUBOIS D J, CHOFFNES D, et al. Information exposure from consumer IoT devices: a multidimensional, network-informed measurement approach[C]//Proceedings of the Internet Measurement Conference, 2019: 267-279.
[46] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579-2605. |