Handwritten Character Recognition Method Based on Multi-Branch Lightweight Residual Network
LI Guangyan, WANG Xiuhui
Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China
LI Guangyan, WANG Xiuhui. Handwritten Character Recognition Method Based on Multi-Branch Lightweight Residual Network[J]. Computer Engineering and Applications, 2023, 59(5): 115-121.
[1] LI Q,CAO H,YAN H,et al.High speed homework data collecting system under K-12 education circumstance[C]//International Symposium on System & Software Relia-bility,2017.
[2] 姚红革,董泽浩,喻钧,等.深度EM胶囊网络全重叠手写数字识别与分离[J].自动化学报,2022,48(12):2996-3005.
YAO Hongge,DONG Zehao,YU Jun,et al.Fully overlapped handwritten number recognition and separation based on deep EM capsule network[J].Acta Automatica Sinica,2022,48(12):2996-3005.
[3] GOODFELLOW I J,WARDE-FARLEY D,MIRZA M,et al.Maxout networks[C]//The 30th International Conference on Machine Learning,2013:1319-1327.
[4] HE K,ZHANG X,REN S,et al.Delving deep into rectifiers:surpassing human-level performance on imagenet classification[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1026-1034.
[5] MA C,HONG Z.Effective handwritten digit recognition based on multi-feature extraction and deep analysis[C]//International Conference on Fuzzy Systems & Knowledge Discovery,2016.
[6] IGNAT A,ACIOBANITEI B.Handwritten digit recognition using rotations[C]//2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing(SYNASC),2016.
[7] SRIVASTAVA S,YADAV S,AGRAWALLA K,et al.Recognition of handwritten digits using computer vision preprocessor based combined architecture of self-organizing map and backpropagation on MNIST dataset[C]//2018 International Conference on Recent Innovations in Electrical,Electronics & Communication Engineering(ICRIEECE),2018.
[8] NYIDE O,GWERU M V.Handwritten digit classification using Iterative haar-like operators and neural networks[C]//2019 International Conference on Advances in Big Data,Computing and Data Communication Systems(icABCD),2019.
[9] URAZOE K,KUROKI N,HIROSE T,et al.Combination of convolutional neural network architecture and its learning method for rotation‐invariant handwritten digit recognition[J].IEEJ Transactions on Electrical and Electronic Engineering,2020,16(1):161-163.
[10] BUCILUA C,CARUANA R,NICULESCU-MIZIL A.Model compression[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,New York,USA,2006:535-541.
[11] ZOPH B,VASUDEVAN V,SHLENS J,et al.Learning transferable architectures for scalable image recognition[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2018.
[12] HOWARD A G,ZHU M,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017.
[13] ROMERO A,BALLAS N,KAHOU S E,et al.FitNets:hints for thin deep nets[J].arXiv:1412.6550,2014.
[14] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,39(6):1137-1149.
[15] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Las Vegas,USA,2016:770-778.
[16] 周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251.
ZHOU F Y,JIN L P,DONG J.Review of convolutional neural network[J].Chinese Journal of Computers,2017,40(6):1229-1251.
[17] 张顺,龚怡宏,王进军.深度卷积神经网络的发展及其在计算机视觉领域的应用[J].计算机学报,2019,42(3):3-32.
ZHANG S,GONG Y H,WANG J J.The development of deep convolution neural network and its applications on computer vision [J].Chinese Journal of Computers,2019,42(3):3-32.
[18] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Columbus,USA,2014:580-587.
[19] GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,Santiago,Chile,2015:1440-1448.
[20] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,USA,2016:779-788.
[21] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision,Amsterdam,Holland,2016:21-37.
[22] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014.
[23] 赖轩,曲延云,谢源,等.基于拓扑一致性对抗互学习的知识蒸馏[J].自动化学报,2023,49(1):102-110.
LAI Xuan,QU Yanyun,XIE Yuan,et al.Topology-guided adversarial deep mutual learning for knowledge distillation[J].Acta Automatica Sinica,2023,49(1):102-110.
[24] URBAN G,GERAS K J,KAHOU S E,et al.Do deep convolutional nets really need to be deep and convolutional?[J].arXiv:1603.05691,2016.
[25] HINTON G,VINYALS O,DEAN J.Distilling the knowledge in a neural network[J].arXiv:1503.02531,2015.
[26] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016:2818-2826.
[27] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016.