ZHAO Lixin, BAI Yu, AN Shengbiao. Research on Multi-Path Lightweight Convolutional Neural Network[J]. Computer Engineering and Applications, 2023, 59(6): 134-145.
[1] LIN T,DOLLáR P,GIRSHICK R B,et al.Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2017:936-944.
[2] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016:770-778.
[3] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2015:1-9.
[4] GAL Y,GHAHRAMANI Z.Bayesian convolutional neural networks with bernoulli approximate variational inference[J].arXiv:1506.02158,2015.
[5] ABDAL R,ZHU P,MITRA N J,et al.StyleFlow:attribute-conditioned exploration of StyleGAN-generated images using conditional continuous normalizing flows[J].arXiv:2008.02401,2020.
[6] GOAN E,FOOKES C.Bayesian neural networks:an introduction and survey[J].arXiv:2006.12024,2020.
[7] PAWLOWSKI N,RAJCHL M,GLOCKER B.Implicit weight uncertainty in neural networks[J].arXiv:1711.01297,2017.
[8] HOWARD A G,ZHU M,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017.
[9] JACOT A,GABRIEL F,HONGLER C.Neural tangent kernel:convergence and generalization in neural networks (invited paper)[C]//Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,2018.
[10] ARORA S,DU S S,HU W,et al.On exact computation with an infinitely wide neural net[J].arXiv:1904.11955,2019.
[11] YANG G,HU E J.Feature learning in infinite-width neural networks[J].arXiv:2011.14522,2020.
[12] GOLUBEVA A,NEYSHABUR B,GUR-ARI G.Are wider nets better given the same number of parameters?[J].arXiv:2010.14495,2020.
[13] 刘洋,战荫伟.基于深度学习的小目标检测算法综述[J].计算机工程与应用,2021,57(2):37-48.
LIU Y,ZHAN Y W.Survey of small object detection algorithms based on deep learning[J].Computer Engineering and Applications,2021,57(2):37-48.
[14] 肖振久,杨晓迪,魏宪,等.改进的轻量型网络在图像识别上的应用[J].计算机科学与探索,2021,15(4):743-753.
XIAO Z J,YANG X D,WEI X,et al.Improved lightweight network in image recognition[J].Journal of Frontiers of Computer Science and Technology,2021,15(4):743-753.
[15] SHWARTZ-ZIV R,TISHBY N.Opening the black box of deep neural networks via information[J].arXiv:1703.
00810,2017.
[16] TISHBY N,ZASLAVSKY N.Deep learning and the information bottleneck principle[C]//2015 IEEE Information Theory Workshop(ITW),2015:1-5.
[17] COVER T M,THOMAS J A.Elements of information theory[M].[S.l.]:Wiley-Interscience,1991.
[18] SHANG W,SOHN K,ALMEIDA D,et al.Understanding and improving convolutional neural networks via concatenated rectified linear units[C]//Proceedings of the 33rd International Conference on Machine Learning,2016.
[19] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2012,60:84-90.
[20] IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[J].arXiv:1502.03167,2015.
[21] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016:2818-2826.
[22] SZEGEDY C,IOFFE S,VANHOUCKE V,et al.Inception-v4,inception-ResNet and the impact of residual connections on learning[J].arXiv:1602.07261,2016.
[23] GAO S,CHENG M,ZHAO K,et al.Res2Net:a new multi-scale backbone architecture[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43:652-662.
[24] HU J,SHEN L,ALBANIE S,et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020:42:2011-2023.
[25] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.
1556,2014.
[26] REDMON J,FARHADI A.YOLOv3:an incremental improvement[J].arXiv:1804.02767,2018.
[27] 权宇,李志欣,张灿龙,等.融合深度扩张网络和轻量化网络的目标检测模型[J].电子学报,2020,48(2):390-397.
QUAN Y,LI Z X,ZHANG C L,et al.Fusing deep dilated convolutions network and light-weight network for object dection[J].Acta Electronica Sinica,2020,48(2):390-397.
[28] VASWANI A,SHAZEER N M,PARMAR N,et al.Attention is all you need[J].arXiv:1706.03762,2017.
[29] HAN K,WANG Y,CHEN H,et al.A survey on visual transformer[J].arXiv:2012.12556,2020.
[30] HUANG Z,WANG X,HUANG L,et al.CCNet:criss-cross attention for semantic segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV),2019:603-612.
[31] WANG Q,WU B,ZHU P,et al.ECA-net:efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:11531-11539.
[32] WANG X,GIRSHICK R B,GUPTA A,et al.Non-local neural networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:7794-7803.
[33] HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2021:13708-13717.
[34] WOO S,PARK J,LEE J,et al.CBAM:convolutional block attention module[J].arXiv:1807.06521,2018.