ZHAO Xuebing, WANG Junjie. Bridge Crack Detection Based on Improved DeeplabV3+ and Migration Learning[J]. Computer Engineering and Applications, 2023, 59(5): 262-269.
[1] PRASANNA P,DANA K J,GUCUNSKI N,et al.Automated crack detection on concrete bridges[J].IEEE Transactions on Automation Science and Engineering,2016,13(2):591-599.
[2] 蒋文波,罗秋容,张晓华.基于数字图像的混凝土道路裂缝检测方法综述[J].西华大学学报(自然科学版),2018,37(1):75-84.
JIANG W B,LUO Q R,ZHANG X H.A review of concrete roads crack detection methods based on digital image[J].Journal of Xihua University(Natural Science Edition),2018,37(1):75-84.
[3] 顾书豪,李小霞,王学渊,等.增强语义信息与多通道特征融合的裂缝检测[J].计算机工程与应用,2021,57(10):204-210.
GU S H,LI X X,WANG X Y,et al.Crack detection based on enhanced semantic information and multi-channel feature fusion[J].Computer Engineering and Applications,2021,57(10):204-210.
[4] ELLENBERG A,KONTSOS A,BARTOLI I,et al.Masonry crack detection application of an unmanned aerial vehicle[C]//International Conference on Computing in Civil & Building Engineering,1995.
[5] 张诗慧,罗晖,裴莹玲,等.基于改进RetinaNet的高铁无砟轨道板表面裂缝检测[J/OL].计算机工程与应用:1-9[2022-03-08].http://kns.cnki.net/kcms/detail/11.2127.TP.20220226.
1844.004.html.
ZHANG S H,LUO H,PEI Y L,et al.Surface crack detection in ballastless slab track of high-speed railway based on improved RetinaNet[J/OL].Computer Engineering and Applications:1-9[2022-03-08].http://kns.cnki.net/kcms/detail/11.2127.TP.20220226.1844.004.html.
[6] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolutional networks for biomedical image segmentation[J].arXiv:1505.04597,2015.
[7] BADRINARAYANAN V,KENDALL A,CIPOLLA R.SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(12):2481-2495.
[8] CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[J].arXiv:1802.02611,2018.
[9] 常惠,饶志强,赵玉林,等.基于改进U-Net网络的隧道裂缝分割算法研究[J].计算机工程与应用,2021,57(22):215-222.
CHANG H,RAO Z Q,ZHAO Y L,et al.Research on tunnel crack segmentation algorithm based on improved U-Net network[J].Computer Engineering and Applications,2021,57(22):215-222.
[10] LIU J,YANG X,LAU S,et al.Automated pavement crack detection and segmentation based on two-step convolutional neural network[J].Computer-Aided Civil and Infrastructure Engineering,2020,35(11):1291-1305.
[11] CHEN T,CAI Z,ZHAO X,et al.Pavement crack detection and recognition using the architecture of SegNet[J].Journal of Industrial Information Integration,2020,18(2):100144.
[12] CHEN J,ZHANG D,HUANG H,et al.Image-based segmentation and quantification of weak interlayers in rock tunnel face via deep learning[J].Automation in Construction,2020,120:103371.
[13] 袁嘉豪,张伟锋,岳学军,等.多种主干网络下DeepLabv3+的混凝土梁裂缝语义分割研究[C]//中国水利学会2021学术年会论文集第五分册,2021:160-164.
YUAN J H,ZHANG W F,YUE X J,et al.Research on semantic segmentation of concrete beam cracks based on DeepLabv3+ under various backbone networks[C]//Proceedings of 2021 Academic Annual Meeting of Chinese Hydraulic Engineering Society,Volume 5,2021:160-164.
[14] WANG H X,LI Y F,DANG L M,et al.Pixel-level tunnel crack segmentation using a weakly supervised annotation approach[J].Computers in Industry,2021,133:103545.
[15] 邱宁佳,王晓霞,王鹏,等.结合迁移学习模型的卷积神经网络算法研究[J].计算机工程与应用,2020,56(5):43-48.
QIU N J,WANG X X,WANG P,et al.Research on convolutional neural network algorithm combined with transfer learning model[J].Computer Engineering and Applications,2020,56(5):43-48.
[16] CHOLLET F.Xception:deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2017.
[17] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016.
[18] WANG Q,WU B,ZHU P,et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020.
[19] HU J,SHEN L,SUN G,et al.Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018.
[20] ROY A G,NAV AB N,WACHINGER C.Concurrent spatial and channel squeeze & excitation in fully convolutional networks[J].arXiv:1803.02579,2018.
[21] IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[J].arXiv:1502.03167,2015.
[22] WU Y,HE K.Group normalization[J].arXiv:1803.08494,2018.
[23] LEI Z,YANG F,ZHANG D,et al.Road crack detection using deep convolutional neural network[C]//IEEE International Conference on Image Processing,2016.
[24] ZGENEL F,SORGU A G.Performance comparison of pretrained convolutional neural networks on crack detection in buildings[C]//35th International Symposium on Automation and Robotics in Construction(ISARC 2018),2018.
[25] LIU Y,YAO J,LU X,et al.DeepCrack:a deep hierarchical feature learning architecture for crack segmentation[J].Neurocomputing,2019,338:139-153.
[26] ZOU Q,CAO Y,LI Q Q,et al.Crack tree:automatic crack detection from pavement images[J].Pattern Recognition Letters,2012,33(3):227-238.
[27] SHI Y,CUI L M,QI Z Q,et al.Automatic road crack detection using random structured forests[J].IEEE Transactions on Intelligent Transportation Systems,2016,17(12):3434-3445.
[28] RUSSELL B C,TORRALBA A,MURPHY K P,et al.LabelMe:a database and web-based tool for image annotation[J].International Journal of Computer Vision,2008,77:157-173.
[29] 李良福,马卫飞,李丽,等.基于深度学习的桥梁裂缝检测算法研究[J].自动化学报,2019,45(9):1727-1742.
LI L F,MA W F,LI L,et al.Research on detection algorithm for bridge cracks based on deep learning[J].Acta Automatica Sinica,2019,45(9):1727-1742.
[30] SANDLER M,HOWARD A,ZHU M,et al.MobileNetV2:inverted residuals and linear bottlenecks[J].arXiv:1801. 04381,2018.