[1] 潘峰, 潘振华, 熊亮, 等. 人工智能技术在智能驾驶控制中的应用[J]. 北京联合大学学报, 2022, 36(3): 30-37.
PAN F, PAN Z H, XIONG L, et al. Application of artificial intelligence in intelligent driving control[J]. Journal of Beijing Union University, 2022, 36(3): 30-37.
[2] 杨康. 人工智能在汽车驾驶技术领域的应用与发展[J]. 汽车实用技术, 2022, 47(11): 16-19.
YANG K. Application and development of artificial intelligence in the field of automobile driving Technology[J]. Automobile Applied Technology, 2022, 47(11): 16-19.
[3] 黄东风. 人工智能在汽车驾驶技术领域的应用与发展[J]. 时代汽车, 2022(1): 42-43.
HUANG D F. Application and development of artificial intelligence in the field of automobile driving technology[J]. Auto Time, 2022 (1): 42-43.
[4] 牟凯, 张舒, 曹洪斌. 人工智能技术在智慧交通领域的应用研究[J]. 物流科技, 2022, 45(20): 98-100.
MOU K, ZHANG S, CAO H B. Application research on artificial intelligence technology in intelligent transportation field[J]. Logistics Sci-Tech, 2022, 45(20): 98-100.
[5] 刘少博, 张晖, 吴超仲.TRB2017年会—002行人交通及智能交通研究综述[J]. 交通信息与安全, 2017, 35(3): 1-10.
LIU S B, ZHANG H, WU C Z. A review of 2017 transportation research board 96th annual meeting with the focuses and areas of pedestrian traffic and intelligent transportation[J].?Journal of Transport Information and Safety, 2017, 35(3): 1-10.
[6] 朱金好, 罗晓萍. 基于决策树型SVM的交通标志图像识别[J]. 长沙理工大学学报(自然科学版), 2004(2): 13-17.
ZHU J H, LUO X P. Recognition of traffic sign image based on decision-tree-based support vector machine[J]. Journal of Changsha University of Science and Technology(Natural Science), 2004(2): 13-17.
[7] 罗晓萍, 蒋加伏, 唐贤瑛. 基于SVM和模糊免疫网络的交通标志图像识别[J]. 计算机工程与设计, 2006, 27(9): 1542-1544.
LUO X P, JIANG J F, TANG X Y. Recognition of traffic sign image based on support vector machine and fuzzy immune networks[J]. Computer Engineering and Design, 2006, 27(9): 1542-1544.
[8] 刘红, 高向东, 杨大鹏. 一种基于仿射变换的三角形交通标志矫正方法[J]. 汽车零部件, 2010(6): 56-57.
LIU H, GAO X D, YANG D P. A correction method for triangle traffic signs based on affine transformation[J].Automobile Parts, 2010(6): 56-57.
[9] LIU M, MAO J X. Traffic signs recognition based on affine invariant Hu’s moment features[J]. Applied Mechanics and Materials, 2013, 321/324: 945-949.
[10] 孙露霞, 张尤赛, 李永顺. 基于感兴趣区域和HOG-CTH特征的交通标志检测[J]. 计算机与数字工程, 2018, 46(6): 1222-1226.
SUN L X, ZHANG Y S, LI Y S. Traffic sign detection based on regions of interest and HOG-CTH features[J].Computer and Digital Engineering, 2018, 46(6): 1222-1226.
[11] 辛靖宇, 徐伟昊, 赵子亮, 等. 基于深度学习的交通标志识别[J]. 北京汽车, 2023(2): 35-38.
XIN J Y, XU W H, ZHAO Z L, et al. Traffic sign recognition based on deep learning[J]. Beijing Automotive Engineering, 2023(2): 35-38.
[12] 徐仙伟, 曹霁. 基于深度学习的交通标志识别算法[J]. 计算机时代, 2019(6): 67-70.
XU X W, CAO J. Traffic sign recognition algorithm with deep learning[J]. Computer Era, 2019(6): 67-70.
[13] ZHU Y Z, YAN W Q. Traffic sign recognition based on deep learning[J]. Multimedia Tools and Applications, 2022, 81(13):17779-17791.
[14] FARAG W. Traffic signs classification by deep learning for advanced driving assistance systems[J]. Intelligent Decision Technologies, 2019, 13(3): 305-314.
[15] 邓乐平, 李伟. 深度学习多场景下交通标志快速检测方法研究[J]. 测绘技术装备, 2022, 24(3): 86-92.
DENG L P, LI W. Fast detection method of traffic signs in multi-scenarios of deep learning[J]. Geomatics Technology and Equipment, 2022, 24(3): 86-92.
[16] 何锐波, 狄岚, 梁久祯. 一种改进的深度学习的道路交通标识识别算法[J].智能系统学报, 2020, 15(6): 1121-1130.
HE R B, DI L, LIANG J Z. An improved deep learning algorithm for road traffic identification[J]. CAAI Transactions on Intelligent Systems, 2020, 15(6): 1121-1130.
[17] 耿经邦, 梁正友. 基于改进ResNet的交通标识识别[J]. 电子技术与软件工程, 2020(6): 138-140.
GENG J B, LIANG Z Y. Traffic sign recognition based on Improved ResNet[J]. Electronic Technology and Software Engineering, 2020(6): 138-140.
[18] 廖聪, 郭凰, 赵茂军, 等. 基于图像增强和SKNet的交通标志识别[J]. 计算机与现代化, 2023(3): 23-28.
LIAO C, GUO H, ZHAO M J, et al. Traffic sign recognition based on image enhancement and SKNet[J]. Computer and Modernization, 2023(3): 23-28.
[19] LI X, WANG W, HU X, et al. Selective kernel networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 510-519.
[20] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[21] HINTON E G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[J]. arXiv:1503.02531, 2015.
[22] 赵胜伟, 葛仕明, 叶奇挺, 等. 基于增强监督知识蒸馏的交通标识分类[J]. 中国科技论文, 2017, 12(20): 2355-2360.
ZHAO S W, GE S M, YE Q T, et al. Traffic sign classification based knowledge distillation with augmentation supervision[J]. China Sciencepaper, 2017, 12(20): 2355-2360.
[23] ALEXANDER W, JAVAD M S, MICHAEL J S. MicronNet: a highly compact deep convolutional neural network architecture for real-time embedded traffic sign classification[J]. IEEE Access, 2018, 6: 59803-59810.
[24] REZA F R, GOU K, KOHICHI O. Lightweight spatial pyramid convolutional neural network for traffic sign classification[C]//Proceedings of the 2018 Indonesian Association for Pattern Recognition International Conference (INAPR), Jakarta, Indonesia, 2018:23-28.
[25] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
[26] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
[27] SANGHYUN W, JONGEHAN P, JOON-YOUNG L, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018.
[28] ZHANG Q L, YANG Y B. SA-Net: shuffle attention for deep convolutional neural networks[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2021.
[29] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021: 13708-13717.
[30] 袁穆佳惠, 陈晓.基于卷积神经网络的交通标志识别方法研究[J].计算机与数字工程, 2023, 51(6):1323-1327.
YUAN M J H, CHEN X. Research on traffic sign recognition method based on CNN[J].Computer & Digital Engineering, 2023, 51(6):1323-1327.
[31] HE S H, CHEN L, ZHANG S Y, et al. Automatic recognition of traffic signs based on visual inspection[J]. IEEE Access, 2021, 9: 43253-43261.
[32] 赵泽毅, 周福强, 王少红, 等. 应用双通道卷积神经网络的交通标识识别方法[J]. 中国测试, 2024, 50(6): 35-41.
ZHAO Z Y, ZHOU F Q, WANG S H, et al. Traffic sign recognition method based on dual channel CNN[J]. China Measurement & Testing Technology, 2024, 50(6): 35-41.
[33] VASU P K A, GABRIEL J, ZHU J, et al. FastViT: a fast hybrid vision transformer using structural reparameterization[J]. arXiv:2303.14189, 2023.
[34] LIU X Y, PENG H, ZHENG N X, et al. EfficientViT: memory efficient vision transformer with cascaded group attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 14420-14430. |