[1] 王景荣, 肖鹤, 解建光. 高速公路拥堵碳排放计算模型研究[J]. 现代交通技术, 2015, 12(2): 81-84.
WANG J R, XIAO H, XIE J G. Research on highway congestion carbon emission calculation model[J]. Modern Transportation Technology, 2015, 12(2): 81-84.
[2] MERGIA W Y, EUSTACE D, CHIMBA D, et al. Exploring factors contributing to injury severity at freeway merging and diverging locations in Ohio[J]. Accident Analysis & Prevention, 2013, 55: 202-210.
[3] 洛玉乐. 匝道合流区网联车辆协同控制策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
LUO Y L. Research on cooperative control strategy of network-connected vehicles in ramp merging area[D]. Harbin: Harbin Institute of Technology, 2022.
[4] WANG H J, GAO H B, YUAN S H, et al. Interpretable decision-making for autonomous vehicles at highway on-ramps with latent space reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8707-8719.
[5] 林祎. 智能网联环境下基于车辆行为优化的匝道管控策略研究[D]. 南京: 东南大学, 2022.
LIN Y. Research on the ramp control strategy based on vehicle behavior optimization in the intelligent networked environment[D]. Nanjing: Southeast University, 2022.
[6] YANG H,RAKHA H. Reinforcement learning ramp metering control for weaving sections in a connected vehicle environment[C]//Proceedings of the 96th Annual Meeting of the Transportation Research Board,2017.
[7] ARAGHI S, KHOSRAVI A, CREIGHTON D. A review on computational intelligence methods for controlling traffic signal timing[J]. Expert Systems with Application, 2015, 42(3): 1538-1550.
[8] 杨建成, 赵武章, 韩自强, 等. 快速路合流区智能网联混合交通组队策略[J]. 武汉理工大学学报 (交通科学与工程版), 2023, 47(3): 440-446.
YANG J C, ZHAO W Z, HAN Z Q, et al. Intelligent network-connected hybrid traffic teaming strategy in expressway merging area[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2023, 47(3): 440-446.
[9] HOU K N, ZHENG F F, LIU X B, et al. Cooperative on-ramp merging control model for mixed traffic on multi-lane freeways[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(10): 10774-10790.
[10] ZHU J, EASA S, GAO K. Merging control strategies of connected and autonomous vehicles at freeway on-ramps: a comprehensive review[J]. Journal of Intelligent and Connected Vehicles, 2022, 5(2): 99-111.
[11] DING J S Y, LI L, PENG H, et al. A rule-based cooperative merging strategy for connected and automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(8): 3436-3446.
[12] LETTER C, ELEFTERIADOU L. Efficient control of fully automated connected vehicles at freeway merge segments[J]. Transportation Research Part C: Emerging Technologies, 2017, 20(80): 190-205.
[13] MU C, DU L, ZHAO X M. Event triggered rolling horizon based systematical trajectory planning for merging platoons at mainline-ramp intersection[J]. Transportation Research Part C: Emerging Technologies, 2021, 125: 103006.
[14] HU X, SUN J. Trajectory optimization of connected and autonomous vehicles at a multilane freeway merging area[J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 111-125.
[15] SUMANTH N, CHALAKI B, MALIKOPOULOS A A. Multi-agent deep reinforcement learning coordination framework for connected and automated vehicles at merging roadways[C]//Proceedings of the 2022 American Control Conference, 2022: 3297-3302.
[16] ANTONIO G P, MARIA-DOLORES C. Multi-agent deep reinforcement learning to manage connected autonomous vehicles at tomorrow’s intersections[J]. IEEE Transactions on Vehicular Technology, 2022, 21(7): 7033-7043.
[17] HEUILLET A, COUTHOUIS F, DIAZ-RODRIGUEZ N. Explainability in deep reinforcement learning[J]. Knowledge-Based Systems, 2020, 214: 106685.
[18] LI M, LI Z B, WANG S C, et al. Enhancing cooperation of vehicle merging control in heavy traffic using communication-based soft actor-critic algorithm[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(6): 6491-6506.
[19] LIN Y, MCPHEE J, AZAD N L. Anti-jerk on-ramp merging using deep reinforcement learning[C]//Proeceedings of the 2020 IEEE Intelligent Vehicles Symposium (Ⅳ), 2020: 7-14.
[20] VRBANIC F, IVANJKO E, MANDZUKA S, et al. Reinforcement learning based variable speed limit control for mixed traffic flows[C]//Proceedings of the 2021 29th Mediterranean Conference on Control and Automation, 2021: 560-565.
[21] LIN K X, ZHAO R Y, XU Z, et al. Efficient large-scale fleet management via multi-agent deep reinforcement learning[C]//Proceedings of the 24th ACM International Conference on Knowledge Discovery & Data Mining, 2018: 1774-1783.
[22] ZHUANG H, LEI C, CHEN Y, et al. Cooperative decision-making for mixed traffic at an unsignalized intersection based on multi-agent reinforcement learning[J]. Applied Sciences, 2023, 13(8): 5018.
[23] PARADA L, CANDELA E, MARQUES L, et al. Safe and efficient manoeuvring for emergency vehicles in autonomous traffic using multi-agent proximal policy optimization[J]. Transportmetrica A: Transport Science, 2023: 1-29.
[24] LI L, ZHAO W Z, WANG C Y, et al. Nash double Q-based multi-agent deep reinforcement learning for interactive merging strategy in mixed traffic[J]. Expert Systems with Applications, 2024, 237: 121458.
[25] BAGWE G, YUAN X Y, CHEN X H, et al. RAMRL: towards robust on-ramp merging via augmented multimodal reinforcement learning[C]//Proceedings of the 2023 IEEE International Conference on Mobility, Operations, Services and Technologies, 2023: 23-33.
[26] ZHOU S X, ZHUANG W C, YIN G C, et al. Cooperative on-ramp merging control of connected and automated vehicles: distributed multi-agent deep reinforcement learning approach[C]//Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems, 2022: 402-408.
[27] HENDERSON S G, NELSON B L. Simulation[M]//Handbooks in operations research and management science. Amsterdam: North-Holland, 2006: 331-434.
[28] BOUTON M, NAKHAEI A, FUJIMURA K, et al. Cooperation-aware reinforcement learning for merging in dense traffic[C]//Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference, 2019: 3441-3447.
[29] 孟凡兴, 张良, 张伟. 驾驶员车头时距研究[J]. 工业工程与管理, 2013, 18(2): 131-135.
MENG F X, ZHANG L, ZHANG W. Research on driver headway time distance[J]. Industrial Engineering and Management, 2013, 18(2): 131-135.
[30] LOWE R, WU Y, TAMAR A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6382-6393. |