[1] 邹权臣, 张涛, 吴润浦, 等. 从自动化到智能化: 软件漏洞挖掘技术进展[J]. 清华大学学报 (自然科学版), 2018, 58(12): 1079-1094.
ZOU Q C, ZHANG T, WU R P, et al. From automation to intelligence: survey of research on vulnerability discovery techniques[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(12): 1079-1094.
[2] MILLER B P, FREDRIKSEN L, SO B. An empirical study of the reliability of UNIX utilities[J]. Communications of the ACM, 1990, 33(12): 32-44.
[3] ZALEWSKI M. American fuzzy lop[EB/OL]. [2023-06-10]. https://lcamtuf.coredump.cx/afl/.
[4] SHAO J, ZHOU Y, LIU G, et al. Optimized mutation of grey-box fuzzing: a deep RL-based approach[C]//Proceedings of the 2023 IEEE 12th Data Driven Control and Learning Systems Conference, 2023: 1296-1300.
[5] YUN J, RUSTAMOV F, KIM J, et al. Fuzzing of embedded systems: a survey[J]. ACM Computing Surveys, 2022, 55(7): 1-33.
[6] B?HME M, PHAM V T, ROVCHOUDHURY A. Coverage-based greybox fuzzing as Markov chain[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, 2016: 1032-1043.
[7] B?HME M, PHAM V T, NGUYEN M D, et al. Directed greybox fuzzing[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017: 2329-2344.
[8] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.
[9] VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2016: 2094-2100.
[10] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[J]. arXiv:1509.
02971, 2015.
[11] CHEN D, ZHANG Y, WEI W, et al. Efficient vulnerability detection based on an optimized rule-checking static analysis technique[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 332-345.
[12] BACKES M, RIECK K, SKORUPPA M, et al. Efficient and flexible discovery of PHP application vulnerabilities[C]//Proceedings of the 2017 IEEE European Symposium on Security and Privacy, 2017: 334-349.
[13] KISS B, KOSMATOV N, PARIENTE D, et al. Combining static and dynamic analyses for vulnerability detection: illustration on heartbleed[C]//Proceedings of the 11th International Haifa Verification Conference, 2015: 39-50.
[14] CHOI Y H, PARK M W, EOM J H, et al. Dynamic binary analyzer for scanning vulnerabilities with taint analysis[J]. Multimedia Tools and Applications, 2015, 74: 2301-2320.
[15] 任泽众, 郑晗, 张嘉元, 等. 模糊测试技术综述[J]. 计算机研究与发展, 2021, 58(5): 944-963.
REN Z Z, ZHENG H, ZHANG J Y, et al. A review of fuzzing techniques[J]. Journal of Computer Research and Development, 2021, 58(5): 944-963.
[16] 史记, 曾昭龙, 杨从保, 等. Fuzzing 测试技术综述[J]. 信息网络安全, 2014 (3): 87-91.
SHI J, ZENG Z L, YANG C B, et al. The summary of fuzzing testing technology[J]. Netinfo Security, 2014(3): 87-91.
[17] LI Y W, JI S L, LYU C Y, et al. V-fuzz: vulnerability prediction-assisted evolutionary fuzzing for binary programs[J]. IEEE Transactions on Cybernetics, 2020, 52(5): 3745-3756.
[18] CHEN C. Grey-box fuzzing with deep reinforcement learning and process trace back[C]//Proceedings of the 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering, 2021: 1167-1171.
[19] 高凤娟, 王豫, 司徒凌云, 等. 基于深度学习的混合模糊测试方法[J]. 软件学报, 2021, 32(4): 988-1005.
GAO F J, WANG Y, SITU L Y, et al. Deep learning-based hybrid fuzz testing[J]. Journal of Software, 2021, 32(4): 988-1005.
[20] B?TTINGER K, GODEFROID P, SINGH R. Deep reinforcement fuzzing[C]//Proceedings of the 2018 IEEE Security and Privacy Workshops, 2018: 116-122.
[21] DROZD W, WAGNER M D. FuzzerGym: a competitive framework for fuzzing and learning[J]. arXiv:1807.07490, 2018.
[22] libFuzzer: a library for coverage-guided fuzz testing[EB/OL]. (2016-08-31)[2023-06-10]. http://llvm.org/docs/LibFuzzer.html.
[23] ZHANG Z, CUI B J, CHEN C. Reinforcement learning-based fuzzing technology[C]//Proceedings of the 14th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, 2021: 244-253.
[24] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[J]. arXiv:1707.06347, 2017.
[25] SCHULMAN J, LEVINE S, ABBEEL P, et al. Trust region policy optimization[C]//Proceedings of the International Conference on Machine Learning, 2015: 1889-1897.
[26] DOLAN-GAVITT B, HULIN P, KIRDA E, et al. Lava: large-scale automated vulnerability addition[C]//Proceedings of the 2016 IEEE Symposium on Security and Privacy, 2016: 110-121. |