[1] THAKKAR A, LOHIYA R. A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions[J]. Artificial Intelligence Review, 2022, 55(1): 453-563.
[2] MAURYA S, KUMAR S, GARG U, et al. An efficient framework for detection and classification of IoT botnet traffic[J]. ECS Sensors Plus, 2022, 1(2): 026401.
[3] KUNDU P P, TRUONG-HUU T, CHEN L, et al. Detection and classification of botnet traffic using deep learning with model explanation[J]. IEEE Transactions on Dependable and Secure Computing, 2022: 3183361.
[4] BISWAS R, ROY S. Botnet traffic identification using neural networks[J]. Multimedia Tools and Applications, 2021, 80: 24147-24171.
[5] APRUZZESE G, ANDREOLINI M, FERRETTI L, et al. Modeling realistic adversarial attacks against network intrusion detection systems[J]. Digital Threats: Research and Practice, 2022, 3(3): 1-19.
[6] RIBEIRO A R L, SANTOS R Y C, NASCIMENTO A C A. Anomaly detection technique for intrusion detection in SDN environment using continuous data stream machine learning algorithms[C]//Proceedings of the 2021 IEEE International Systems Conference, 2021: 1-7.
[7] SOMMER R, PAXSON V. Outside the closed world: on using machine learning for network intrusion detection[C]//Proceedings of the 2010 IEEE Symposium on Security and Privacy, 2010: 305-316.
[8] PONTES C F, SOUZA D M M, GONDIM J J, et al. A new method for flow-based network intrusion detection using the inverse Potts model[J]. IEEE Transactions on Network and Service Management, 2021, 18(2): 1125-1136.
[9] UMER M F, SHER M, BI Y. Flow-based intrusion detection: techniques and challenges[J]. Computers & Security, 2017, 70: 238-254.
[10] VERMA A, RANGA V. Statistical analysis of CIDDS-001 dataset for network intrusion detection systems using distance-based machine learning[J]. Procedia Computer Science, 2018, 125: 709-716.
[11] RING M, LANDES D, HOTHO A, et al. Detection of slow port scans in flow-based network traffic[J]. PLoS One, 2018, 13(9): 0204507.
[12] ABDULHAMMED R, FAEZIPOUR M, ABUZNEID A, et al. Deep and machine learning approaches for anomaly-based intrusion detection of imbalanced network traffic[J]. IEEE Sensors Letters, 2019, 3: 1-4.
[13] SONG S, LING L, MANIKOPOULO C N. Flow-based statistical aggregation schemes for network anomaly detection[C]//Proceedings of the IEEE International Conference on Networking, Sensing and Control, 2006: 786-791.
[14] TRAN Q A, JIANG F, HU J. A real-time netflow-based intrusion detection system with improved BBNN and high-frequency field programmable gate arrays[C]//Proceedings of the 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, 2012: 201-208.
[15] NGUYEN H A, VAN NGUYEN T, KIM D I, et al. Network traffic anomalies detection and identification with flow monitoring[C]//Proceedings of the 2008 5th IFIP International Conference on Wireless and Optical Communications Networks, 2008: 1-5.
[16] JADIDI Z, MUTHUKKUMARASAMY V, SITHIRASENAN E. Metaheuristic algorithms based flow anomaly detector[C]//Proceedings of the 2013 19th Asia-Pacific Conference on Communications, 2013: 717-722.
[17] WINTER P, HERMANN E, ZEILINGER M. Inductive intrusion detection in flow-based network data using one-class support vector machines[C]//Proceedings of the 2011 4th IFIP International Conference on New Technologies, Mobility and Security, 2011: 1-5.
[18] WAGNER C, FRAN?OIS J, STATE R, et al. Machine learning approach for IP-flow record anomaly detection[C]//Proceedings of the 10th International IFIP TC 6 Networking Conference, 2011: 28-39.
[19] SHUBAIR A, RAMADASS S, ALTYEB A A. kENFIS: kNN-based evolving neuro-fuzzy inference system for computer worms detection[J]. Journal of Intelligent & Fuzzy Systems, 2014, 26(4): 1893-1908.
[20] COSTA K A P, PEREIRA L A M, NAKAMURA R Y M, et al. A nature-inspired approach to speed up optimum-path forest clustering and its application to intrusion detection in computer networks[J]. Information Sciences, 2015, 294: 95-108.
[21] HOSSEINPOUR F, AMOLI P V, FARAHNAKIAN F, et al. Artificial immune system based intrusion detection: innate immunity using an unsupervised learning approach[J]. International Journal of Digital Content Technology and Its Applications, 2014, 8(5): 1-12.
[22] ZHAO D, TRAORE I, SAYED B, et al. Botnet detection based on traffic behavior analysis and flow intervals[J]. Computers & Security, 2013, 39: 2-16.
[23] STEVANOVIC M, PEDERSEN J M. An efficient flow-based botnet detection using supervised machine learning[C]//Proceedings of the 2014 International Conference on Computing, Networking and Communications, 2014: 797-801.
[24] HADDADI F, RUNKEL D, ZINCIR-HEYWOOD A N, et al. On botnet behaviour analysis using GP and C4.5[C]//Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, 2014: 1253-1260.
[25] 皇甫雨婷, 李丽颖, 王海洲, 等. 自注意力的多特征网络流量异常检测与分类[J]. 华东师范大学学报 (自然科学版), 2021(6): 161-173.
HUANGFU Y T, LI L Y, WANG H Z, et al. Enabling self-attention based multi-feature anomaly detection and classification of network traffic[J]. Journal of East China Normal University (Natural Science), 2021(6): 161-173.
[26] CAO Y L, JI R W, HUANG X, et al. Empirical mode decomposition-empowered network traffic anomaly detection for secure multipath TCP communications[J]. Mobile Networks and Applications, 2022, 27(6): 2254-2263.
[27] BAKHSHI T, GHITA, B. Anomaly detection in encrypted internet traffic using hybrid deep learning[J]. Security and Communication Networks, 2021(1): 1-16.
[28] WAWROWSKI L, BIALAS A, KAJZER A, et al. Anomaly detection module for network traffic monitoring in public institutions[J]. Sensors, 2023, 23(6): 2974.
[29] CARRERA F, DENTAMARO V, GALANTUCCI S, et al. Combining unsupervised approaches for near real-time network traffic anomaly detection[J]. Applied Sciences, 2022, 12(3): 1759.
[30] DUTTA V, PAWLICKI M, KOZIK R, et al. Unsupervised network traffic anomaly detection with deep autoencoders[J]. Logic Journal of the IGPL, 2022, 30(6): 912-925.
[31] ZHU S, XU X, GAO H, et al. CMTSNN: a deep learning model for multi-classification of abnormal and encrypted traffic of Internet of things[J]. IEEE Internet of Things Journal, 2023, 10(13): 11773-11791.
[32] KUROSE, J, KEITH W. Computer networking: a top-down approach edition[M]. Massachusetts: Addision Wesley, 2007.
[33] JAYNES, EDWIN T. Information theory and statistical mechanics[J]. Physical Review, 1957, 106(4): 620.
[34] LESTARI W, SUMARLINDA S. Implementation of K-nearest neighbor (KNN) and suport vector machine (SVM) for clasification cardiovascular disease[J]. International Journal of Multi Science, 2022, 2(10): 30-36.
[35] ZHANG F, SHANG T, LIU J. Imbalanced encrypted traffic classification scheme using random forest[C]//Proceedings of the 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), 2020: 837-842.
[36] QI H, WANG J, LI W, et al. A blockchain-driven IIoT traffic classification service for edge computing[J]. IEEE Internet of Things Journal, 2020, 8(4): 2124-2134.
[37] SMADIA S, ALMOMANIB O, MOHAMMADC A, et al. VPN encrypted traffic classification using XGBoost[J]. International Journal, 2021: 24066625. |