[1] MITTAL A, ZISSERMAN A, TORR P. Hand detection using multiple proposals[C]//Proceedings of the 22nd British Machine Vision Conference, Dundee, Aug 29-Sep 2, 2011.
[2] ROY K, MOHANTY A, SAHAY R R. Deep learning based hand detection in cluttered environment using skin segmentation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops, 2017.
[3] DENG X M, ZHANG Y D, YANG S, et al. Joint hand detection and rotation estimation using CNN[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1888-1900.
[4] GAO Q, LIU J, JU Z. Robust real-time hand detection and localization for space human-robot interaction based on deep learning[J]. Neurocomputing, 2020, 390: 198-206.
[5] KARBASI M, BHATTI Z, AGHABABAEYAN R, et al. Real-time hand detection by depth images: a survey[J]. Jurnal Teknologi, 2016, 78(2): 141-148.
[6] LE T H N, QUACH K G, ZHU C, et al. Robust hand detection and classification in vehicles and in the wild[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, Jul 21-26, 2017.
[7] ASHIQUZZAMAN A, LEE H, KIM K, et al. Compact spatial pyramid pooling deep convolutional neural network based hand gestures decoder[J]. Applied Sciences, 2020, 10: 7898.
[8] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020: 390-391.
[9] ZHU X, LYU S, WANG X, et al. TPH-YOLOV5: improved YOLOV5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[10] ITTI L, KOCH C. Computational modelling of visual attention[J]. Nature Reviews Neuroscience, 2001, 2(3): 194-203.
[11] WOO S, PARK J, LEE JY, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, 2018: 3-19.
[12] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2015: 2017-2025.
[13] LI X, WANG W H, HU X L, et al. Selective kernel networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 510-519.
[14] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017: 2117-2125.
[15] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018: 8759-8768.
[16] TAN M, PANG R, LE Q V. EffificientDet: scalable and effificient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020: 10781-10790.
[17] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37: 1904-1916.
[18] MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//ICML Workshop on Deep Learning for Audio, Speech and Language Processing, 2013.
[19] MA N, ZHANG X, SUN J. Funnel activation for visual recog-
nition[J]. arXiv:2007.11824, 2020.
[20] HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, 2015: 1026-1034.
[21] HOAI M, ZISSERMAN A. Thread-safe: towards recognizing human actions across shot boundaries[C]//Proceedings of the 12th Asian Conference on Computer Vision, Singapore, 2014: 222-237.
[22] LIN T Y, MAIREM S, BELONGIE L, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision, Zurich, 2014: 740-755.
[23] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022. |