Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (18): 16-25.DOI: 10.3778/j.issn.1002-8331.2204-0049
• Research Hotspots and Reviews • Previous Articles Next Articles
TAO Wenbin, QIAN Yurong, ZHANG Yiyang, MA Hengzhi, LENG Hongyong, MA Mengnan
Online:
2022-09-15
Published:
2022-09-15
陶文彬,钱育蓉,张伊扬,马恒志,冷洪勇,马梦楠
TAO Wenbin, QIAN Yurong, ZHANG Yiyang, MA Hengzhi, LENG Hongyong, MA Mengnan. Survey of Deep Clustering Algorithm Based on Autoencoder[J]. Computer Engineering and Applications, 2022, 58(18): 16-25.
陶文彬, 钱育蓉, 张伊扬, 马恒志, 冷洪勇, 马梦楠. 基于自编码器的深度聚类算法综述[J]. 计算机工程与应用, 2022, 58(18): 16-25.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2204-0049
[1] JAIN A K.Data clustering:50 years beyond K-means[J].Pattern Recognition Letters,2010,31(8):651-666. [2] 杨俊闯,赵超.K-Means聚类算法研究综述[J].计算机工程与应用,2019,55(23):7-14. YANG J C,ZHAO C.Survey on K-means clustering algorithm[J].Computer Engineering and Applications,2019,55(23):7-14. [3] ZHOU Y,WU H,LUO Q,et al.Automatic data clustering using nature-inspired symbiotic organism search algorithm[J].Knowledge-Based Systems,2019,163:546-557. [4] ABUALIGAH L M,KHADER A T,HANANDEH E S.A new feature selection method to improve the document clustering using particle swarm optimization algorithm[J].Journal of Computational Science,2018,25:456-466. [5] YU S S,CHU S W,WANG C M,et al.Two improved k-means algorithms[J].Applied Soft Computing,2018,68:747-755. [6] XU J,LANGE K.Power [k]-means clustering[C]//Proceedings of the 36th International Conference on Machine Learning,2019:6921-6931. [7] HERSHEY J R,CHEN Z,ROUX J L,et al.Deep clustering:discriminative embeddings for segmentation and separation[C]//2016 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2016:31-35. [8] CARON M,BOJANOWSKI P,JOULIN A,et al.Deep clustering for unsupervised learning of visual features[C]//European Conference on Computer Vision,2018. [9] TSCHANNEN M,BACHEM O,LUCIC M.Recent advances in autoencoder-based representation learning[J].arXiv:1812. 905069,2018. [10] XIE J,GIRSHICK R,FARHADI A.Unsupervised deep embedding for clustering analysis[C]//International Conference on Machine Learning,2016:478-487. [11] GUO X,GAO L,LIU X,et al.Improved deep embedded clustering with local structure preservation[C]//International Joint Conferences on Artificial Intelligence Organization,2017:1753-1759. [12] GUO X,LIU X,ZHU E,et al.Deep clustering with convolutional autoencoders[C]//International Conference on Neural Information Processing,2017:373-382. [13] CAI J,WANG S,GUO W.Unsupervised embedded feature learning for deep clustering with stacked sparse auto-encoder[J].Expert Systems with Applications,2021,186:115729. [14] JIANG Z,ZHENG Y,TAN H,et al.Variational deep embedding:an unsupervised and generative approach to clustering[J].arXiv:1611.05148,2016. [15] ZHANG D,SUN Y,ERIKSSON B,et al.Deep unsupervised clustering using mixture of autoencoders[J].arXiv:1712.07788,2017. [16] MIN E,GUO X,LIU Q,et al.A survey of clustering with deep learning:from the perspective of network architecture[J].IEEE Access,2018,6:39501-39514. [17] MACQUEEN J.Some methods for classification and analysis of multivariate observations[C]//Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,1967:281-297. [18] YANG B,FU X,SIDIROPOULOS N D,et al.Towards K-means-friendly spaces:simultaneous deep learning and clustering[C]//Proceedings of the 34th International Conference on Machine Learning,2017:3861-3870. [19] XIE J,GIRSHICK R,FARHADI A.Unsupervised deep embedding for clustering analysis[J].arXiv:1511.06335,2015. [20] BEEFERMAN D,BERGER A.Agglomerative clustering of a search engine query log[C]//Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2000:407-416. [21] PEARSON K.On lines and planes of closest fit to systems of points in space[J].The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1901,2(11):559-572. [22] BURGES C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167. [23] TAX D M J,DUIN R P W.Support vector domain description[J].Pattern Recognition Letters,1999,20(11/13):1191-1199. [24] DONATH W E,HOFFMAN A J.Lower bounds for the partitioning of graphs[J].IBM Journal of Research and Development,1973,17(5):420-425. [25] ESTER M,KRIEGEL H P,SANDER J,et al.Density-based spatial clustering of applications with noise[C]//International Conference on Knowledge Discovery and Data Mining,1996:6. [26] RUMELHART D E,HINTON G E,WILLIAMS R J.Learning representations by back-propagating errors[J].Nature,1986,323(6088):533-536. [27] BOURLARD H,KAMP Y.Auto-association by multilayer perceptrons and singular value decomposition[J].Biological Cybernetics,1988,59(4):291-294. [28] MASCI J,MEIER U,CIRE?AN D,et al.Stacked convolutional auto-encoders for hierarchical feature extraction[C]//Proceedings of the 21st International Conference on Artificial Neural Networks-Volume Part I,2011:52-59. [29] NG A.Sparse autoencoder[J].CS294A Lecture Notes,2011,72(2011):1-19. [30] KINGMA D P,WELLING M.Auto-encoding variational bayes[J].arXiv:1312.6114,2013. [31] LAURENS V D M,HINTON G.Visualizing data using t-SNE[J].Journal of Machine Learning Research,2008,9(2605):2579-2605. [32] MRABAH N,KHAN N M,KSANTINI R,et al.Deep clustering with a dynamic autoencoder:from reconstruction towards centroids construction[J].Neural Networks,2020,130:206-228. [33] DIZAJI K G,HERANDI A,HUANG H.Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization[C]//International Conference on Neural Information Processing,2017:5736-5745. [34] WICKRAMASINGHE C S,MARINO D L,MANIC M.ResNet autoencoders for unsupervised feature learning from high-dimensional data:deep models resistant to performance degradation[J].IEEE Access,2021,9:40511-40520. [35] HUANG P,HUANG Y,WANG W,et al.Deep embedding network for clustering[C]//2014 22nd International Conference on Pattern Recognition,2014:1532-1537. [36] BOTTOU L.Large-scale machine learning with stochastic gradient descent[J].Physica-Verlag HD,2010. [37] DILOKTHANAKUL N,MEDIANO P A M,GARNELO M,et al.Deep unsupervised clustering with Gaussian mixture variational autoencoders[J].arXiv:1611.02648,2016. [38] KINGMA D P,SALIMANS T,JOZEFOWICZ R,et al.Improved variational inference with inverse autoregressive flow[J].Advances in Neural Information Processing Systems,2016,29:4743-4751. [39] YANG X,DENG C,ZHENG F,et al.Deep spectral clustering using dual autoencoder network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:4066-4075. [40] 陈锐,唐永强,张彩霞,等.深度多网络嵌入聚类[J].模式识别与人工智能,2021,34(1):14-24. CHEN R,TANG Y Q,ZHANG C X,et al.Deep multi-network embedded clustering[J].Pattern Recognition and Artificial Intelligence,2021,34(1):14-24. [41] DU G,ZHOU L,YANG Y,et al.Deep multiple auto-encoder-based multi-view clustering[J].Data Science and Engineering,2021,6(3):323-338. [42] MUNKRES J R.Algorithms for the assignment and transportation problems[J].Journal of The Society for Industrial and Applied Mathematics,1957,10:196-210. [43] 向宽,李松松,栾明慧,等.基于改进Faster RCNN的铝材表面缺陷检测方法[J].仪器仪表学报,2021,42(1):191-198. XIANG K,LI S S,LUAN M H,et al.Aluminum product surface defect detection method based on improved faster RCNN[J].Chinese Journal of Scientific Instrument,2021,42(1):191-198. [44] 张晨阳,黄腾,吴壮壮.基于K-Means聚类与深度学习的RGB-D SLAM算法[J].计算机工程,2022,48(1):236-244. ZHANG C Y,HUANG T,WU Z Z.RGB-D SLAM algorithm based on K-means clustering and deep learning[J].Computer Engineering,2022,48(1):236-244. [45] 杨杰文,章光,陈西江,等.融合深度学习聚类分割和形态学的混凝土表面裂缝量化识别[J].激光与光电子学进展,2020,57(22):242-252. YANG J W,ZHANG G,CHEN X J,et al.Quantitative identification of concrete surface cracks based on deep learning clustering segmentation and morphology[J].Laser & Optoelectronics Progress,2020,57(22):242-252. [46] 杨焰飞,曹阳.基于深度学习的无人机拍摄图像绝缘子目标检测[J].激光杂志,2020,41(10):63-66. YANG Y F,CAO Y.Image insulator target detection based on deep learning for UAV[J].Laser Journal,2020,41(10):63-66. [47] XIE Y,LIN B,QU Y,et al.Joint deep multi-view learning for image clustering[J].IEEE Transactions on Knowledge and Data Engineering,2021,33(11):3594-3606. [48] 高蕴梅.MGTL-SAE精细特征学习的图像资源快速检索[J].情报资料工作,2020,41(5):79-87. GAO Y M.Quick retrieval of image resources based on MGTL-SAE fine feature learning[J].Information and Documentation Services,2020,41(5):79-87. [49] 李艳红,赵宏伟,王素格,等.面向微博文本流的负面情感突发话题检测[J].计算机应用,2020,40(12):3458-3464. LI Y H,ZHAO H W,WANG S G,et al.Detection of negative emotion burst topic in microblog text stream[J].Journal of Computer Applications,2020,40(12):3458-3464. [50] 陈珂,叶颖雅,马乙平,等.用于微博情感分析的深度学习网络模型[J].计算机与数字工程,2020,48(7):1674-1681. CHEN K,YE Y Y,MA Y P,et al.Deep learning network model for micro-blog sentiment analysis[J].Computer & Digital Engineering,2020,48(7):1674-1681. [51] 桑凯恒,张繁昌,李传辉.地震倒谱特征参数谱聚类地震相分析方法[J].石油地球物理勘探,2021,56(1):38-48. SANG K H,ZHANG F C,LI C H.Seismic cepstrum characteristic parameter spectral clustering seismic facies analysis method[J].Oil Geophysical Prospecting,2021,56(1):38-48. [52] 李亚芳,梁烨,冯韦玮,等.基于社区优化的深度网络嵌入方法[J].计算机应用,2021,41(7):1956-1963. LI Y F,LIANG Y,FENG W Y,et al.Deep network embedding method based on community optimization[J].Journal of Computer Applications,2021,41(7):1956-1963. [53] 邱亚星,王希栋,边森,等.基于聚类分析和深度学习的多频多模网络负载均衡优化[J].电信科学,2020,36(7):156-162. QIU Y X,WANG X D,BIAN S,et al.Load balancing based on clustering analysis and deep learning for multi-frequency and multi-mode network[J].Telecommunications Science,2020,36(7):156-162. [54] LIU Z,LI J G,SHEN Z Q,et al.Learning efficient convolutional networks through network slimming[C]//2017 IEEE International Conference on Computer Vision,2017. [55] XIANG Q,WANG X,SONG Y,et al.One-dimensional convolutional neural networks for high-resolution range profile recognition via adaptively feature recalibrating and automatically channel pruning[J].International Journal of Intelligent Systems,2021,36(1):332-361. [56] 王晓丹,来杰,李睿,等.多层去噪极限学习机[J].吉林大学学报(工学版),2020,50(3):1031-1039. WANG X D,LAI J,LI R,et al.Multilayer denoising extreme learning machine[J].Journal of Jilin University(Engineering and Technology Edition),2020,50(3):1031-1039. [57] LI S,KAWALE J,FU Y.Deep collaborative filtering via marginalized denoising auto-encoder[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management,2015:811-820. |
[1] | YANG Rongying, HE Qing, DU Nisuo. Chinese Named Entity Recognition Based on Gated Multi-Feature Extractors [J]. Computer Engineering and Applications, 2022, 58(8): 117-124. |
[2] | GUO Xinwei, MA Nan, LIU Weifeng, SUN Fuchun, ZHANG Jinli, CHEN Yang, ZHANG Guoping. Expression Recognition and Interaction of Pharyngeal Swab Collection Robot [J]. Computer Engineering and Applications, 2022, 58(8): 125-135. |
[3] | ZHAO Hong, FU Zhaoyang, ZHAO Fan. Microblog Sentiment Analysis Based on BERT and Hierarchical Attention [J]. Computer Engineering and Applications, 2022, 58(5): 156-162. |
[4] | LIANG Longyue, LIU Bo. Research on Financial Risk Early Warning of Listed Companies Based on Text Mining [J]. Computer Engineering and Applications, 2022, 58(4): 255-266. |
[5] | YAN Jun, CHANG Le, FENG Lihua. Online Order Batching and Picking Path Planning Model and Algorithm [J]. Computer Engineering and Applications, 2022, 58(4): 283-289. |
[6] | HU Chunsheng, YAN Xiaopeng, WEI Hongxing, LI Guoli. Survey of Target Detection and Trajectory Prediction Based on Stereo Vision [J]. Computer Engineering and Applications, 2022, 58(3): 50-65. |
[7] | XIAO Xue, LI Chengcheng. Research Progress on Evaluation Methods of Handwritten Chinese Characters [J]. Computer Engineering and Applications, 2022, 58(2): 27-42. |
[8] | ZHU Liangqi, HUANG Bo, HUANG Jitao, MA Liyuan, SHI Zhicai. Research on Short Text Clustering Based on BERT and AutoEncoder [J]. Computer Engineering and Applications, 2022, 58(2): 145-152. |
[9] | LIU Zunxiong, SHI Yapeng, PENG Xiaoyu, WANG Yihong. Hyperspectral Image Classification Based on Two-Channel Variational Autoencoder [J]. Computer Engineering and Applications, 2022, 58(2): 244-251. |
[10] | WANG Baole, HUO Zhanqiang. Research on Feature Extraction of 3D Point Cloud Based on MANet [J]. Computer Engineering and Applications, 2022, 58(19): 267-275. |
[11] | AN Xiaodong, LI Yali, WANG Fang. Overview of Infrared and Visible Image Fusion Algorithms for Automotive Driving Assistance System [J]. Computer Engineering and Applications, 2022, 58(19): 64-75. |
[12] | NIU Run, QU Yi, ZHENG Lehui, WEI Jianguo. Parallel High-Resolution Network Design for Small Object Detection [J]. Computer Engineering and Applications, 2022, 58(18): 172-179. |
[13] | HONG Yang, YUAN Xia, GAO Fei, CHENG Cheng, YANG Huan, CHEN Yaozhong, LU Jianfeng. Traversable Area Detection for 3D Point Cloud in Semi-Structured Environment [J]. Computer Engineering and Applications, 2022, 58(18): 251-259. |
[14] | HUANG Wei, LIU Guiquan. Study on Hierarchical Multi-Label Text Classification Method of MSML-BERT Model [J]. Computer Engineering and Applications, 2022, 58(15): 191-201. |
[15] | ZHU Mixue, LIU Zhiqiang, ZHANG Xu, LI Wenjing, SU Jiaxin. Review of Research on Video-Based Smoke Detection Algorithms [J]. Computer Engineering and Applications, 2022, 58(14): 16-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||