Research on Financial Risk Early Warning of Listed Companies Based on Text Mining
LIANG Longyue, LIU Bo
1.School of Economics, Guizhou University, Guiyang 550000, China
2.Research Center for the Development and Application of Marxist Economics, Guizhou University, Guiyang 550000, China
LIANG Longyue, LIU Bo. Research on Financial Risk Early Warning of Listed Companies Based on Text Mining[J]. Computer Engineering and Applications, 2022, 58(4): 255-266.
[1] TENNYSON B M,INGRAM R W,DUGAN M T.Assessing the information content of narrative disclosures in explaining bankruptcy[J].Journal of Business Finance & Accounting,1990,17(3):391-410.
[2] 陈艺云.基于信息披露文本的上市公司财务困境预测:以中文年报管理层讨论与分析为样本的研究[J].中国管理科学,2019,27(7):23-34.
CHEN Y Y.Forecasting financial distress of listed companies with textual content of the information disclosure:a study based MD&A in Chinese annual reports[J].Chinese Journal of Management Science,2019,27(7):23-34.
[3] MATIN R,HANSEN C,HANSEN C,et al.Predicting distresses using deep learning of text segments in annual reports[J].Expert Systems with Application,2019,132:199-208.
[4] ALTMAN E I.Financial ratios,discriminant analysis and the prediction of corporate bankruptcy[J].The Journal of Finance,1968,23(4):589-609.
[5] OHLSON J.Financial ratios and the probabilistic prediction of bankruptcy[J].Journal of Accounting Research,1980,18(1):109-131.
[6] ODOM M D,SHARDA R.A neural network model for bankruptcy prediction[C]//1990 IJCNN International Joint Conference on Neural Networks,1990.
[7] 杨淑娥,王乐平.基于BP神经网络和面板数据的上市公司财务危机预警[J].系统工程理论与实践,2007(2):61-67.
YANG S E,WANG L P.Research on financial warning for listed companies by using BP neural network and panel data[J].Systems Engineering-Theory & Practice,2007(2):61-67.
[8] 方匡南,杨阳.SGL-SVM方法研究及其在财务困境预测中的应用[J].统计研究,2018,35(8):104-115.
FANG K N,YANG Y.SGL-SVM with its application in forecasting corporate financial distress[J].Statistical Research,2018,35(8):104-115.
[9] 宋歌,马涛.基于深度学习的上市公司财务风险预警模型研究[J].价值工程,2019,38(1):53-55.
SONG G,MA T.Research on financial risk early warning model of listed companies based on deep learning[J].Value Engineering,2019,38(1):53-5.
[10] WANG G,WANG K M,ZHOU Y Y,et al.Establishment of a financial crisis early warning system for domestic listed companies based on three decision tree models[J].Mathematical Problems in Engineering,2020:8036154.
[11] SHIRATA C Y,TAKEUCHI H,OGINO S,et al.Extracting key phrases as predictors of corporate bankruptcy:empirical analysis of annual reports by text mining[J].Journal of Emerging Technologies in Accounting,2011,8(1):31-44.
[12] BACH M P,KRSTI? ?,TURULJA L,et al.Text mining for big data analysis in financial sector:a literature review[J].Sustainability,2019,11(5):1277.
[13] HáJEK P,OLEJ V.Evaluating sentiment in annual reports for financial distress prediction using neural networks and support vector machines[C]//14th International Conference on Engineering Applications of Neural Networks,Halkidiki,Sep 13-16,2013.Berlin,Heidelberg:Springer,2013.
[14] HáJEK P,OLEJ V,MY?KOVá R.Forecasting stock prices using sentiment information in annual reports—a neural network and support vector regression approach[J].WSEAS Transactions on Business & Economics,2013,10(4):293-305.
[15] 谢德仁,林乐.管理层语调能预示公司未来业绩吗?——基于我国上市公司年度业绩说明会的文本分析[J].会计研究,2015(2):20-27.
XIE D R,LIN L.Do management tone help to forecast firms’ future performance of the company?—A text analysis based on annual earnings communication conferences of listed companies in China[J].Accounting Research,2015(2):20-27.
[16] HENRY E.Are investors influenced by how earnings press releases are written?[J].Social Science Electronic Publishing,2008,45(4):363-407.
[17] LOUGHRAN T,MCDONALD B.When is a liability not a liability? Textual analysis,dictionaries,and 10-Ks[J].Journal of Finance,2011,66(1):35-65.
[18] 陈艺云,贺建风,覃福东.基于中文年报管理层讨论与分析文本特征的上市公司财务困境预测研究[J].预测,2018,37(4):53-59.
CHEN Y Y,HE J F,QIN F D.Financial distress prediction based on the textual characteristics of management discussion & analysis in the Chinese annual reports[J].Forecasting,2018,37(4):53-59.
[19] DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018.
[20] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems,2017:5998-6008.
[21] HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
[22] 李恒辉,郭交,韩文霆,等.栈式稀疏自编码网络的多时相全极化SAR散射特征降维[J].遥感学报,2020,24(11):1379-1391.
LI H H,GUO J,HAN W T,et al.Scattering feature dimension reduction of multitemporal fully PolSAR image based on stacked sparse AutoEncoder[J].Journal of Remote Sensing,2020,24(11):1379-1391.
[23] 李贺,冯天瑾,丁香乾,等.企业财务预警PCA-SVM模型研究[J].计算机工程,2006,32(9):233-235.
LI H,FENG T J,DING X Q,et al.PCA-SVM models for early warning of enterprises through finance data[J].Computer Engineering,2006,32(9):233-235.
[24] 肖毅,熊凯伦,张希.基于TEI@I方法论的企业财务风险预警模型研究[J].管理评论,2020,32(7):226-235.
XIAO Y,XIONG K L,ZHANG X.Enterprise financial risk early warning model based on TEI@I methodology[J].Management Review,2020,32(7):226-235.
[25] FAN J Q,XUE L R,ZHOU Y.How much can machines learn finance from chinese text data?[J].Social Science Electronic Publishing,2021.DOI:10.2139/ssrn.3765862.