Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (19): 64-75.DOI: 10.3778/j.issn.1002-8331.2203-0600
• Research Hotspots and Reviews • Previous Articles Next Articles
AN Xiaodong, LI Yali, WANG Fang
Online:
2022-10-01
Published:
2022-10-01
安晓东,李亚丽,王芳
AN Xiaodong, LI Yali, WANG Fang. Overview of Infrared and Visible Image Fusion Algorithms for Automotive Driving Assistance System[J]. Computer Engineering and Applications, 2022, 58(19): 64-75.
安晓东, 李亚丽, 王芳. 汽车驾驶辅助系统红外与可见光融合算法综述[J]. 计算机工程与应用, 2022, 58(19): 64-75.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2203-0600
[1] 康拉德·赖夫.汽车电子学[M].5版.西安:西安交通大学出版社,2017:321-323. KONRAD R.Automobile electronics[M].5th ed.Xi’an:Xi’an Jiaotong University Press,2017:321-323. [2] 冯鑫,胡开群.红外与可见光图像融合算法分析与研究[M].长春:吉林大学出版社,2020:109-220. FENG X,HU K Q.Analysis and research on infrared and visible image fusion algorithm[M].Changchun:Jilin University Press,2020:109-220. [3] 李文礼,李建波,石晓辉,等.用于汽车ADAS系统测试的软目标车研究进展[J].汽车工程学报,2021,11(4):280-288. LI W L,LI J B,SHI X H,et al.Research progress of soft target vehicles for automotive ADAS testing[J].Chinese Journal of Automotive Engineering,2021,11(4):280-288. [4] 胡钢,刘哲,许小平,等.像素级图像融合技术的研究与进展[J].计算机应用与研究,2008,25(3):650-655. HU G,LIU Z,XU X P,et al.Research and recent development of image fusion at pixel level[J].Application Research of Computers,2008,25(3):650-655. [5] ZHANG Q,LIU Y,BLUM R S,et al.Sparse representation based multi sensor image fusion for multi focus and multi-modality images:a review[J].Information Fusion,2018,40:57-75. [6] REN X Y,MENG F Y,HU T,et al.Infrared-visible image fusion based on convolutional neural networks(CNN)[C]//Proceedings of the International Conference on Intelligent Science and Big Data Engineering,2018:301-307. [7] MA J Y,YU W,LIANG P W,et al.FusionGAN:A generative adversarial network for infrared and visible image fusion[J].Information Fusion,2019,48:11-26. [8] MA J Y,MA Y,LI C.Infrared and visible image fusion methods and applications:A survey[J].Information Fusion,2019,45:153-178. [9] 高永光,宋志娜,蔡肖芋.基于NSCT的自适应可见光与红外图像融合方法[J].地理空间信息,2016,14(12):30-32. GAO Y G,SONG Z N,CAI X Y.Self-adaption fusion method of optical and infrared images based on NSCT[J].Geospatial Information,2016,14(12):30-32. [10] 王焕清.结合NSCT和领域特征的红外与可见光图像融合[J].信息通信,2018,(4):17-20. WANG H Q.Image fusion visible and infrared image based on NSCT and neighborhood features[J].Information & Communications,2018(4):17-20. [11] 周华兵,侯积磊,吴伟,等.基于语义分割的红外和可见光图像融合[J].计算机研究与发展,2021,58(2):436-443. ZHOU H B,HOU J L,WU W,et al.Infrared and visible image fusion based on semantic segmentation[J].Journal of Computer Research and Development,2021,58(2):436-443. [12] 申铉京,张雪峰,王玉.像素级卷积神经网络多聚焦图像融合算法[J/OL].吉林大学学报(工学版)(2021-10-21)[2022-02-23].https://kns.cnki.net/kcms/detail/22.1341.t.20220223.0848.001.html. SHEN X J,ZHANG X F,WANG Y.Multi-focus image fusion algorithm based on pixel-level convolutional neural network[J/OL].Journal of Jilin University(Engineering and Technology Edition)(2021-10-21)[2022-02-23].https://kns.cnki.net/kcms/detail/22.1341.t.20220223.0848. 001.html. [13] LI H,QI X B,XIE W Y.Fast infrared and visible image fusion with structural decomposition[J].Knowledge Based Systems,2020,204:106182. [14] 李钢,王雷,张仁斌.基于特征能量加权的红外与可见光图像融合[J].光电工程,2010,37(3):83-87. LI G,WANG L,ZHANG R B.Infrared and visible image fusion based on feature energy[J].Opto-Electronic Engineering,2010,37(3):83-87. [15] 杨桄,童涛,孟强强,等.基于梯度加权的红外与可见光图像融合方法[J].红外与激光工程,2014,43(8):2772-2779. YANG G,TONG T,MENG Q Q,et al.Infrared and visible images fusion method based on gradient weighted[J].Infrared and Laser Engineering,2014,43(8):2772-2779. [16] WRIGHT J,MA Y,MAIRAL J,et al.Spare representation for computer vision and pattern recognition[J].Proceedings of the IEEE,2010,98(6):1031-1044. [17] 杨风暴,董安冉,张雷,等.DWT、NSCT和PCA协同组合红外偏振图像融合[J].红外技术,2017,39(3):201-203. YANG F B,DONG A R,ZHANG L,et al.Infrared polarization image fusion using the synergistic combination of DWT,NSCT and improved PCA[J].Infrared Technology,2017,39(3):201-203. [18] 孔韦韦,雷英杰,雷阳,等.基于改进型NSCT变换的灰度可见光与红外图像融合方法[J].控制与决策,2010,25(11):1607-1612. KONG W W,LEI Y J,LEI Y,et al.Fusion method for gray scale visible light and infrared images based on improved NSCT[J].Control and Decision,2010,25(11):1607-1612. [19] LIU G C,YAN S C.Latent low rank representation for subspace segmentation and feature extraction[C]//Proceedings of the International Conference on Computer Vision,2011:1615-1622. [20] LI H,WU X J,KITTLER J.MDLatLRR:A novel decomposition method for infrared and visible image fusion[J].IEEE Transactions on Image Processing,2020,29:4733-4746. [21] XU H X,GONG L M,XUAN H Z,et al.Multiview clustering via consistent and specific nonnegative matrix factorization with graph regularization[J/OL].Multimedia Sytems(2021-10-27)[2022-01-25].https://doi.org/10.1007/s00530-022-00905-x. [22] 杨秋芬,桂卫华,胡豁生.基于改进非线性加权的图像融合算法[J].计算机工程与应用,2014,50(14):22-25. YANG Q F,GUI W H,HU H S.Image fusion algorithm based on improved nonlinear weight[J].Computer Engineering and Applications,2014,50(14):22-25. [23] STOLKIN R,REES D,TALHA M,et al.Bayesian fusion of thermal and visible spectra camera data for region based tracking with rapid background adaptation[C]//Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems(MFI),2012:192-199. [24] SUBR K,SOLER C,DURAND F.Edage-preserving multiscale image decomposition based on local extrema[J].ACM Transactions on Graphics,2009,28(5):89-97. [25] BABU M,SHAI F,ISLAM,et al.An image denoising method based on multi resolution bilateral filter[J].International Journal of Circuits,Systems and Signal Processing,2019,13:705-708. [26] DANIEL S,DEY A K,ABOWD G D.The context toolkit:aiding the development of context-aware applications[C]//Proceedings of the Sigchi Conference on Human Factors in Computing Systems,2019,434-441. [27] 杨擎宇,宋泉宏,魏志飞,等.基于引导滤波权重与显著信息优化的红外与可见光图像融合[J].空天防御,2021,4(4):113-126. YANG Q Y,SONG Q H,WEI Z F,et al.Infrared and visible light image fusion based on guided filtering weight and saliency information optimization[J].Air & Space Defense,2021,4(4):113-126. [28] 赵爱罡,王宏力,杨小冈,等.基于局部显著性与梯度L0范数的红外图像保边平滑算法[J].电光与控制,2017,24(2):19-24. ZHAO A G,WANG H L,YANG X G,et al.Edge preserving smooth algorithm for infrared images based on local saliency and L0 norm of gradient[J].Electronics Optics & Control,2017,24(2):19-24. [29] BABIRISETTI D P,DHULI R.Multi-focus image fusion using maximum symmetric surround saliency detection[J].Electronic Letters on Computer Vision and Image Analysis,2016,14(2):58-73. [30] BAVIRISETTI D P,DHULI R.Two-scale image fusion of visible and infrared images using saliency detection[J].Infrared Physics & Technology,2016,76:52-64. [31] WANG S Y,SHEN Y.Multi-modal image fusion based on saliency guided in NSCT domain[J].IET Image Processing,2020,14(13):3188-3201. [32] 叶坤涛,李文,舒蕾蕾,等.结合改进显著性检测与NSST的红外与可见光图像融合方法[J].红外技术,2021,43(12):1212-1221. YE K T,LI W,SHU L L,et al.Infrared method based on improved saliency detection and non-subsampled shearlet transform[J].Infrared Technology,2021,43(12):1212-1221. [33] 程永翔,刘坤,贺钰博,等.基于卷积神经网络与视觉显著性的图像融合[J].计算机应用与软件,2020,37(3):225-230. CHENG Y G,LIU K,HE Y B,et al.Image fusion with convolution neural network and visual saliency[J].Computer Applications and Software,2020,37(3):225-230. [34] 汪玉美,陈代梅,赵根保.基于目标提取与拉普拉斯变换的红外和可见光图像融合算法[J].激光与光电子学进展,2017,54(1):104-112. WANG Y M,CHEN D M,ZHAO G B.Image fusion algorithm of infrared and visible images based on target extraction and Laplace transformation[J].Laser & Optoelectronics Progress,2017,54(1):104-112. [35] 李建林,俞建成,孙胜利.基于梯度金字塔图像融合的研究[J].科学技术与工程,2007,7(22):5818-5822. LI J L,YU J C,SUN S L.Study of image fusion based on grad pyramid algorithm[J].Science Technology and Engineering,2007,7(22):5818-5822. [36] 刘斌,董迪,陈俊霖.基于方向性对比度金字塔的图像融合方法[J].量子电子学报,2017,34(4):405-413. LIU B,DONG D,CHEN J L.Image fusion method based on directional contrast pyramid[J].Chinese Journal of Quantum Electronics,2017,34(4):405-413. [37] 王建,王必宁,杨根善,等.基于形态学金字塔的医学图像融合技术[J].兵工自动化,2014,33(1):82-84. WANG J,WANG B N,YANG G S,et al.Fusion technology of medical image based on morphological pyramid[J].Ordnance Industry Automation,2014,33(1):82-84. [38] 李婵飞,邓奕.平稳小波变换和模糊数学的红外与可见光图像融合[J].计算机与数字工程,2017,45(5):874-877. LI C F,DENG Y.Image fusion method for infrared and visible light images based on SWT and fuzzy mathematics[J].Computer & Digital Engineering,2017,45(5):874-877. [39] 邓谦,熊邦书,吴开志.基于小波帧变换的多聚焦图像融合算法[J].南昌航空大学学报(自然科学版),2009,23(2):68-72. DENG Q,XIONG B S,WU K Z.Multi-focus image fusion method based on wavelet frame transform[J].Journal of Nanchang Hangkong University(Natural Sciences),2009,23(2):68-72. [40] 李树涛,王耀南.基于树状小波分解的多传感器图像融合[J].红外与毫米波学报,2001(3):219-222. LI S T,WANG Y N.Multisensor image fusion based on tree-structure wavelet decomposition[J].Journal of Infrared and Millimeter Waves,2001(3):219-222. [41] 杨艳春,李娇,党建武,等.基于冗余小波变换与引导滤波的多聚焦图像融合[J].计算机科学,2018,45(2):301-305. YANG Y C,LI J,DANG J W,et al.Multi-focus image fusion based on redundant wavelet transform and guided filtering[J].Computer Science,2018,45(2):301-305. [42] BALAJI E,DHARANI K,UMESH K.Boundary based analysis of image fusion using discrete wavelet transform[J].International Journal of Emerging Science and Engineering,2019,6(4):10-14. [43] 赵子沂,郑永果.基于脊波的多光谱和全色图像融合方法研究[J].计算机工程与应用,2012,48(15):164-167. ZHAO Z Y,ZHENG S G.Research of image fusion of multi-spectral and panchromatic images based on ridgelet transform[J].Computer Engineering and Applications,2012,48(15):164-167. [44] 高雪琴,刘刚,肖刚,等.基于FPDE的红外与可见光图像融合算法[J].自动化学报,2020,26(4):796-804. GAO X Q,LIU G,XIAO G,et al.Fusion algorithm of infrared and visible images based on FPDE[J].Acta Automatica Sinica,2020,26(4):796-804. [45] 张雷,罗长更,张颖颖,等.基于支持度变换的红外与可见光图像融合算法[J].激光技术,2015,39(3):428-431. ZHANG L,LUO C G,ZHANG Y Y,et al.Fusion algorithm of infrared and visible images based on support value transform[J].Laser Technology,2015,39(3):428-431. [46] 郭明,符拯,奚晓梁.基于局部能量的NSCT域红外与可见光图像融合算法[J].红外与激光工程,2012,41(8):2229-2235. GUO M,FU C,XI X L.Novel fusion algorithm for infrared and visible images based on local energy in NSCT domain[J].Infrared and Laser Engineering,2012,41(8):2229-2235. [47] ZHANG H,MA X,TIAN Y S.An image fusion method based on curvelet transform and guided filter enhancement[J].Mathematical Problems in Engineering,2020(5):1023-1027. [48] 邓立暖,尧新峰.基于NSST的红外与可见光图像融合算法[J].电子学报,2017,45(12):2965-2970. DENG L N,RAO X F.Research on the fusion algorithm of infrared and visible images based on non-subsampled shearlet transform[J].Acta Electronica Sinica,2017,45(12):2965-2970. [49] JIANG Q,LIU Y,FU X,et al.Image fusion method based on structure-based saliency map and FDST-PCNN framework[J].IEEE Access,2019,7:83484-83494. [50] 张彬,许廷发,倪国强.基于曲波变换的红外/可见光图像融合[J].计算机仿真,2008(11):226-228. ZHANG B,XU T F,NI G Q.The fusion of infrared and visible image with curvelet transform[J].Computer Simulation,2008(11):226-228. [51] 魏鑫.多尺度与稀疏表示相结合的光学图像[D].合肥:合肥工业大学,2021. WEI X.Multi-scale optics combined with sparse representation research on image fusion algorithm[D].Hefei:Hefei University of Technology,2021. [52] ZHANG C F,YUE Z,YI L Z,et al.Infrared and visible image fusion using NSCT and convolutional sparse representation[C]//Proceedings of the International Conference on Image and Graphics,2019:393-405. [53] DA C,ARTHUR L,ZHOU J P.The nonsubsampled contourlet transform:theory,design,and applications[J].IEEE Transactions on Image Processing,2006,15(10):3089-3101. [54] XIANG T Z,YAN L,GAO R R.A fusion algorithm for infrared and visible images based on adaptive dual-channel unit-linking PCNN in NSCT domain[J].Infrared Physics & Technology,2015,69:53-61. [55] 纪峰,李泽仁,常霞,等.基于PCA和NSCT变换的遥感图像融合方法[J].图学学报,2017,38(2):247-252. JI F,LI Z R,CHANG X,et al.Remote sensing image fusion method based on PCA and NSCT transform[J].Journal of Graphics,2017,38(2):247-252. [56] 吴粉侠,段群.基于NSCT变换的PCA与PCNN相结合的图像融合算法[J].计算机技术与发展,2015,25(12):72-75. WU F X,DUAN Q.Image fusion algorithm combining PCNN and PCA based on NSCT[J].Computer Technology and Development,2015,25(12):72-75. [57] 路黎明.基于局部能量与NSCT的红外与可见光图像融合[J].数字技术与应用,2021,39(6):100-102. LU L M.Infrared and visible image fusion based on local energy and NSCT[J].Digital Technology & Application,2021,39(6):100-102. [58] EASLEY G,LABATE D,LIM W Q.Sparse directional image representation using discrete shearlet transform[J].Applied and Computation Harmonic Analysis,2008,25(1):25-46. [59] KONG W,ZHANG L,LEI Y,et al.Novel fusion method for visible light and infrared images based on NSST-SF-PCNN[J].Infrated Physics & Technology,2014,65:103-112. [60] 李向阳,曹宇彤,陈笑,等.基于自适应NSST-PCNN的红外与可见光图像融合方法研究[J].长春理工大学学报(自然科学版),2021,44(5):12-18. LI X Y,CAO Y T,CHEN X,et al.Research on infrared and visible image fusion method based on adaptive NSST-PCNN[J].Journal of Changchun University of Science and Technology(Natural Science Edition),2021,44(5):12-18. [61] HUANG Y,BI D Y,WU D P.Infrared and visible image fusion based on different constraints in the non-subsampled shearlet transform domain[J].Sensors,2018,18(4):1169-1175. [62] 巩稼民,吴艺杰,刘芳,等.基于NSST域结合SCM与引导滤波的图像融合[J].光电子.激光,2021,23(7):719-727. GONG J M,WU Y J,LIU F,et al.Image fusion based on nonsubsampled shearlet transform domain combined with spiking cortical model and guided filtering[J].Journal of Optoelectronics Laser,2021,23(7):719-727. [63] NEWMAN E A,HARLINE P.The infrared vision of snakes[J].Scientific American,1982,246(3):116-127. [64] 马义德,戴若兰,李廉.一种基于脉冲耦合神经网络和图像熵的自动图像分割方法[J].通信学报,2002,23(1):46-51. MA Y D,DAI R L,LI L.Automated image segmentation using pulse coupled neural networks and images entropy[J].Journal on Communications,2002,23(1):46-51. [65] BROUSSARD R P,ROGERS S K,OXLEY M E,et al.Physiologically motivated image fusion for object detection using a pulse coupled neural network[J].IEEE Transactions on Neural Networks,1990,10(3):554-563. [66] 赵景朝,曲仕茹.基于Curvelet变换与自适应PCNN的红外与可见光图像融合[J].西北工业大学学报,2011,29(6):849-853. ZHAO J C,QU S R.A better algorithm for fusion of infrared and visible image based on curvelet transform and adaptive pulse coupled neural networks(PCNN)[J].Journal of Northwestern Polytechnical University,2011,29(6):849-853. [67] 吴粉侠,尤新凤,赵蔷.基于NSCT变换的红外与可见光图像PCNN融合算法[J].咸阳师范学院学报,2019,34(2):67-71. WU F X,YOU X F,ZHAO Q.Infrared and visible image fusion using PCNN in NSCT domain[J].Journal of Xianyang Normal University,2019,34(2):67-71. [68] XIA J M,LU Y,TAN L,et al.Intelligent fusion of infrared and visible image data based on convolutional sparse representation and improved pulse-coupled neural network[J].Computers,Materials & Continua,2021,67(1):613-624. [69] LIU Y,CHEN X,CHENG J,et al.Infrared and visible image fusion with convolutional neural networks[J].International Journal of Wavelets Multiresolution and Information Processing,2018,16(3):1850018. [70] REN X Y,MENG F Y,HU T,et al.Infrared-visible image fusion based on convolutional neural networks(CNN)[C]//Proceedings of the International Conference on Intelligence Science and Big Data Engineering,2018:301-307. [71] SZEGEDY C,IOFFE S,VANHOUCKE V,et al.Inception-v4,inception-ResNet and the Impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence,2016:4278-4284. [72] LI H,WU X J.DenseFuse:A fusion approach to infrared and visible images[J].IEEE Transactions on Image Processing,2019,28(5):2614-2623. [73] XU D D,WANG Y C,ZHANG X,et al.Infrared and visible image fusion using a deep unsupervised framework with perceptual loss[J].IEEE Access,2020,8:206445-206458. [74] 陈清江,李毅,柴昱洲.基于卷积神经网络的红外图像融合算法[J].激光与红外,2019,49(1):123-128. CHEN Q J,LI Y,CHAI Y Z.Infrared image fusion algorithm based on convolutional neural network[J].Laser & Infrared,2019,49(1):123-128. [75] LEI Y,JIE C,SAAD R,et al.Improving the performance of image fusion based on visual saliency weight map combined with CNN[J].IEEE Access,2020,8:59976-59986. [76] LI Y Q,ZHAO H T,HU Z W,et al.IVFuseNet:Fusion of infrared and visible light images for depth prediction[J].Information Fusion,2019,58:1-12. [77] AN W B,WANG H W.Infrared and visible image fusion with supervised convolutional neural network[J].Optik-International Journal for Light and Electron Optics,2020,219:165120. [78] GAO Z S,WANG Q L,ZUO C L.A total variation global optimization framework and its application on infrared and visible image fusion[J].Signal Image and Video Processing,2021,16:219-227. [79] XIA J M,LU Y,TAN L,et al.Intelligent fusion of infrared and visible image data based on convolutional sparse representation and improved pulse coupled neural network[J].Computers,Materials & Continua,2021,67(1):613-624. [80] WANG Z Y,LI X F,DUAN H R,et al.Multifocus image fusion using convolutional neural networks in the discrete wavelet transform domain[J].Multimedia Tools and Applications,2019,78(24):34483-34512. [81] 夏景明,陈轶鸣,陈轶才,等.基于稀疏表示和NSCT-PCNN的红外与可见光图像融合[J].电光与控制,2018,25(6):1-6. XIA J M,CHEN Y M,CHEN Y C,et al.Infrared and visible image fusion based on sparse representation and NSCT-PCNN[J].Electronics Optics & Control,2018,25(6):1-6. [82] LIU Y,CHEN X,RABAB K,et al.Image fusion with convolutional sparse representation[J].IEEE Signal Processing Letters,2016,23(12):1882-1886. [83] 张洲宇,曹云峰,丁萌,等.采用多层卷积稀疏表示的红外与可见光图像融合[J].哈尔滨工业大学学报,2021,53(12):51-59. ZHANG Z Y,CAO Y F,DING M,et al.Infrared and visible image fusion via multi-layer convolutional sparse representation[J].Journal of Harbin Institute of Technology,2021,53(12):51-59. [84] 魏亚南,曲怀敬,王纪委,等.基于NSCT和卷积稀疏表示的红外与可见光图像融合[J].计算机与数字工程,2022,50(2):276-283. WEI Y N,QU H J,WANG J W,et al.Infrared and visible image fusion based on NSCT and convolutional sparse representation[J].Computer & Digital Engineering,2022,50(2):276-283. [85] 刘先红,陈志斌,秦梦泽,等.结合引导滤波和卷积稀疏表示的红外与可见光图像融合[J].光学精密工程,2018,26(5):1242-1253. LIU X H,CHEN Z B,QIN M Z,et al.Infrared and visible image fusion using guided filter and convolutional sparse representation[J].Optics and Precision Engineering,2018,26(5):1242-1253. [86] GAO C R,LIU F Q,YAN H.Infrared and visible image fusion using dual-tree complex wavelet transform and convolutional sparse representation[J].Journal of Intelligent & Fuzzy Systems,2020,39(3):1-13. [87] 梁晨,王利斌,李卓群,等.生成对抗网络技术与研究进展[J].信息安全研究,2022,8(3):235-240. LIANG C,WANG L B,LI Z Q,et al.Technology and research progress of generative adversarial networks[J].Journal of Information Security Research,2022,8(3):235-240. [88] MA J Y,LIANG P W,YU W,et al.Infrared and visible image fusion via detail preserving adversarial learning[J].Information Fusion,2020,54:85-98. [89] MA J Y,XU H,JIANG J J,et al.DDcGAN:A dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J].IEEE Transactions on Image Processing,2020,29:4980-4995. [90] CHEN L,HAN J,TIAN F.Infrared and visible image fusion using two-layer generative adversarial network[J].Journal of Intelligent and Fuzzy Systems,2021,40(6):11897-11913. [91] SHI Y,LI J J,YUAN X S.DFPGAN:Dual fusion path generative adversarial network for infrared and visible image fusion[J].Infrared Physics & Technology,2021,119:103947. [92] MA J Y,ZHANG H,SHAO Z F,et al.GANMcC:A generative adversarial network with multiclassification constraints for infrared and visible image fusion[J].IEEE Transactions on Instrumentation and Measurement,2021,70:20192085. [93] XU D D,WANG Y C,XU S Y,et al.Infrared and visible image fusion with a generative adversarial network and a residual network[J].Applied Sciences,2020,10(2):554. [94] LI J,HUO H T,LI C,et al.Attention FGAN:Infrared and visible image fusion using attention based generative adversarial networks[J].IEEE Transactions on Multimedia,2020,23:1383-1396. [95] XU J T,SHI X P,QIN S Z,et al.LBP-BEGAN:A generative adversarial network architecture for infrared and visible image fusion[J].Infrared Physics & Technology,2020,104:103144. [96] ZHANG H,LE Z L,SHAO Z F,et al.MFF-GAN:An unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion[J].Information Fusion,2021,66:40-53. [97] RAO D Y,WU X J,XU T Y.TGFuse:An infrared and visible image fusion approach based on transformer and generative adversarial network[J].arXiv:2201.10147,2022. |
[1] | GAO Guangshang. Survey on Attention Mechanisms in Deep Learning Recommendation Models [J]. Computer Engineering and Applications, 2022, 58(9): 9-18. |
[2] | JI Meng, HE Qinglong. AdaSVRG: Accelerating SVRG by Adaptive Learning Rate [J]. Computer Engineering and Applications, 2022, 58(9): 83-90. |
[3] | HE Qianqian, SUN Jingyu, ZENG Yazhu. Neighborhood Awareness Graph Neural Networks for Session-Based Recommendation [J]. Computer Engineering and Applications, 2022, 58(9): 107-115. |
[4] | LUO Xianglong, GUO Huang, LIAO Cong, HAN Jing, WANG Lixin. Spatiotemporal Short-Term Traffic Flow Prediction Based on Broad Learning System [J]. Computer Engineering and Applications, 2022, 58(9): 181-186. |
[5] | Alim Samat, Sirajahmat Ruzmamat, Maihefureti, Aishan Wumaier, Wushuer Silamu, Turgun Ebrayim. Research on Sentence Length Sensitivity in Neural Network Machine Translation [J]. Computer Engineering and Applications, 2022, 58(9): 195-200. |
[6] | CHEN Yixiao, Alifu·Kuerban, LIN Wenlong, YUAN Xu. CA-YOLOv5 for Crowded Pedestrian Detection [J]. Computer Engineering and Applications, 2022, 58(9): 238-245. |
[7] | CHEN Yidong, LU Zhonghua. Forecasting CPI Based on Convolutional Neural Network and Long Short-Term Memory Network [J]. Computer Engineering and Applications, 2022, 58(9): 256-262. |
[8] | FANG Yiqiu, LU Zhuang, GE Junwei. Forecasting Stock Prices with Combined RMSE Loss LSTM-CNN Model [J]. Computer Engineering and Applications, 2022, 58(9): 294-302. |
[9] | ZHANG Xin, YAO Qing’an, ZHAO Jian, JIN Zhenjun, FENG Yuncong. Image Semantic Segmentation Based on Fully Convolutional Neural Network [J]. Computer Engineering and Applications, 2022, 58(8): 45-57. |
[10] | SHI Jie, YUAN Chenxiang, DING Fei, KONG Weixiang. Survey of Building Target Detection in SAR Images [J]. Computer Engineering and Applications, 2022, 58(8): 58-66. |
[11] | YANG Rongying, HE Qing, DU Nisuo. Chinese Named Entity Recognition Based on Gated Multi-Feature Extractors [J]. Computer Engineering and Applications, 2022, 58(8): 117-124. |
[12] | GUO Xinwei, MA Nan, LIU Weifeng, SUN Fuchun, ZHANG Jinli, CHEN Yang, ZHANG Guoping. Expression Recognition and Interaction of Pharyngeal Swab Collection Robot [J]. Computer Engineering and Applications, 2022, 58(8): 125-135. |
[13] | XIONG Fengguang, ZHANG Xin, HAN Xie, KUANG Liqun, LIU Huanle, JIA Jionghao. Research on Improved Semantic Segmentation of Remote Sensing [J]. Computer Engineering and Applications, 2022, 58(8): 185-190. |
[14] | YANG Xi, YAN Jie, WANG Wen, LI Shaoyi, LIN Jian. Research and Prospect of Brain-Inspired Model for Visual Object Recognition [J]. Computer Engineering and Applications, 2022, 58(7): 1-20. |
[15] | YANG Jinfan, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, LI Kecen, GAO Jing. Review of One-Stage Vehicle Detection Algorithms Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(7): 55-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||