[1] SUN L,WANG L,QIAN Y,et al.Feature selection using Lebesgue and entropy measures for incomplete neighborhood decision systems[J].Knowledge-Based Systems,2019,186:104942.
[2] 孙林,赵婧,徐久成,等.基于改进帝王蝶优化算法的特征选择方法[J].模式识别与人工智能,2020,33(11):981-994.
SUN L,ZHAO J,XU J C,et al.Feature selection method based on improved monarch butterfly optimization algorithm[J].Pattern Recognition and Artificial Intelligence,2020,33(11):981-994.
[3] KENNEDY J,EBERHART R.Particle swarm optimization[C]//International Conference on Neural Networks,2002.
[4] MIRJALILI S.The ant lion optimizer[J].Advances in Engineering Software,2015,83:80-98.
[5] SM A,SMM B,AL A.Grey wolf optimizer[J].Advances in Engineering Software,2014:46-61.
[6] MIRJALILI S,LEWIS A.The whale optimization algorithm[J].Advances in Engineering Software,2016,95:51-67.
[7] 张九龙,王晓峰,芦磊,等.若干新型智能优化算法对比分析研究[J].计算机科学与探索,2022,16(1):88-105.
ZHANG J L,WANG X F,LU L,et al.Analysis and research of several new intelligent optimization algorithms[J].Journal of Frontiers of Computer Science and Technology,2022,16(1):88-105.
[8] MAFARJA M M,SEYEDALI M.Hybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selection[J].Soft Computing,2018:1-17.
[9] 贾鹤鸣,李瑶,孙康健.基于遗传乌燕鸥算法的同步优化特征选择[J].自动化学报,2022,48(6):1601-1615.
JIA H M,LI Y,SUN K J.Simultaneous feature selection optimization based on hybrid sootytern optimization algorithm and genetic algorithm[J].Acta Automatica Sinica,2022,48(6):1601-1615.
[10] 王万良,朱凯莉,李伟琨,等.改进蜻蜓算法及其在特征选择中的应用[J].计算机集成制造系统,2020,26(8):2124-2132.
WANG W L,ZHU K L,LI W K,et al.Improved dragonfly algorithm and its application in feature selection[J].Computer Integrated Manufacturing Systems,2020,26(8):2124-2132.
[11] 赵泽渊,代永强.改进混合二进制蝗虫优化特征选择算法[J].计算机科学与探索,2021,15(7):1339-1349.
ZHAO Z Y,DAI Y Q.Improved shuffled binary grasshopper optimization feature selection algorithm[J].Journal of Frontiers of Computer Science and Technology,2021,15(7):1339-1349.
[12] FARAMARZI A,HEIDARINEJAD M,MIRJALILI S,et al.Marine predators algorithm:a nature-inspired metaheuristic[J].Expert Systems with Applications,2020,152:113377.
[13] HOUSSEIN E H,MAHDY M A,FATHY A,et al.A modified marine predator algorithm based on opposition based learning for tracking the global MPP of shaded PV system-ScienceDirect[J].Expert Systems with Applications,2021,183:115253.
[14] FAN Q,HUANG H,CHEN Q P,et al.A modified self-adaptive marine predators algorithm:framework and engineering applications[J].Engineering with Computers,2021.
[15] ZHONG K,ZHOU G,DENG W,et al.MOMPA:multi-objective marine predator algorithm[J].Computer Methods in Applied Mechanics and Engineering,2021,385(1):114029.
[16] ELAZIZ M A,MOHAMMADI D,OLIVA D,et al.Quantum marine predators algorithm for addressing multilevel image segmentation[J].Applied Soft Computing,2021:107598.
[17] RAMEZANI M,BAHMANYAR D,RAZMJOOY N.A new improved model of marine predator algorithm for optimization problems[J].Arabian Journal for Science and Engineering,2021,46(9):8803-8826.
[18] HANSEN N,MüLLER S D,KOUMOUTSAKOS P.Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation(CMA-ES)[J].Evolutionary Computation,2014,11(1):1-18.
[19] TANABE R,FUKUNAGA A.Success-history based parameter adaptation for differential evolution[C]//2013 IEEE Congress on Evolutionary Computation(CEC),2013.
[20] AWAD N H,ALI M Z,SUGANTHAN P N.Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems[C]//2017 IEEE Congress on Evolutionary Computation(CEC),2017.
[21] FARAMARZI A,HEIDARINEJAD M,STEPHENS B,et al.Equilibrium optimizer:a novel optimization algorithm[J].Knowledge-Based Systems,2020,191:105190.
[22] DERRAC J,GARCíA S,MOLINA D,et al.A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J].Swarm & Evolutionary Computation,2011,1(1):3-18.
[23] ELAZIZ M A,EWEES A A,YOUSRI D,et al.An improved marine predators algorithm with fuzzy entropy for multi-level thresholding:real world example of COVID-19 CT image segmentation[J].IEEE Access,2020,8:125306-125330.
[24] AL-QANESS M A A,EWEES A A,FAN H,et al.Marine predators algorithm for forecasting confirmed cases of COVID-19 in Italy,USA,Iran and Korea[J].International Journal of Environmental Research and Public Health,2020,17(10):3520.
[25] HU G,ZHU X N,WEI G,et al.An improved marine predators algorithm for shape optimization of developable ball surfaces[J].Engineering Applications of Artificial Intelligence,2021,105:104417.
[26] SANKALAP A,PRIYANKA A.Binary butterfly optimization approaches for feature selection[J].Expert Systems with Applications,2019,116:147-160.
[27] HOLLAND J H.Adaptation in natural and artificial systems[M].[S.l.]:MIT Press,1992.
[28] MIRJALILI S.Dragonfly algorithm:a new meta-heuristic optimization technique for solving single-objective,discrete,and multi-objective problems[J].Neural Computing and Applications,2016,27(4):1053-1073.
[29] MIRJALILI S,GANDOMI A H,MIRJALILI S Z,et al.Salp swarm algorithm:a bio-inspired optimizer for engineering design problems[J].Advances in Engineering Software,2017,114:163-191.
[30] MIRJALILI S.SCA:a sine cosine algorithm for solving optimization problems[J].Knowledge-Based Systems,2016,96:120-133.
[31] POURPANAH F,SHI Y H,LIM C P,et al.Feature selection based on brain storm optimization for data classification[J].Applied Soft Computing Journal,2019,80:761-775.
[32] LONG W,JIAO J,LIANG X,et al.Pinhole-imaging-based learning butterfly optimization algorithm for global optimization and feature selection[J].Applied Soft Computing,2021,103:107146.
[33] TOO J,ABDULLAH A R,SAAD N M.A new co-evolution binary particle swarm optimization with multiple inertia weight strategy for feature selection[J].Informatics,2019,6(2):21.
[34] TOO J,ABDULLAH A R.Binary atom search optimisation approaches for feature selection[J].Connection Science,2020,32(4):406-430.
[35] TOO J,ABDULLAH A R,SAAD N M.A new quadratic binary Harris Hawk optimization for feature selection[J].Electronics,2019,8(10):1130.
[36] TOO J,ABDULLAH A R,SAAD N M.Feature selection based on binary tree growth algorithm for the classification of myoelectric signals[J].Machines,2018,6(4):65.