Empirical Study on Forecast of Large Stock Dividends of Listed Companies Based on Integrated Learning
ZHANG Tianhua, LUO Kangyang
1.School of Mathematics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China
2.School of Computer Science and Technology, East China Normal University, Shanghai 200062, China
ZHANG Tianhua, LUO Kangyang. Empirical Study on Forecast of Large Stock Dividends of Listed Companies Based on Integrated Learning[J]. Computer Engineering and Applications, 2022, 58(10): 255-262.
[1] 董竹,张欣.市场行情影响投资者的股利偏好吗?[J].财经理论与实践,2019,40(6):54-62.
DONG Z,ZHANG X.Do market conditions affect investors’dividend preferences?[J].The Theory and Practice of Finance and Economics,2019,40(6):54-62.
[2] 刘运,叶德磊.高送转、公司业绩与高管减持规模[J].财经论丛,2019(9):62-72.
LIU Y,YE D L.High transfer,corporate performance and executive reduction scale[J].Collected Essays on Finance and Economics,2019(9):62-72.
[3] 黎超,胡宗义,施淑蓉.基于股市投资者情绪的非理性投机泡沫模型研究[J].财经理论与实践,2018,39(5):51-57.
LI C,HU Z Y,SHI S R.Research on irrational speculation bubble model based on investor sentiment in stock market[J].The Theory and Practice of Finance and Economics,2018,39(5):51-57.
[4] 李心丹,俞红海,陆蓉,等.中国股票市场高送转现象研究[J].管理世界,2014(11):133-145.
LI X D,YU H M,LU R,et al.Research on the phenomenon of high transfer in Chinese stock market[J].Management World,2014(11):133-145.
[5] 谢德仁,崔宸瑜,廖珂.上市公司高送转与内部人股票减持:“谋定后动”还是“顺水推舟”?[J].金融研究,2016(11):158-173.
XIE D R,CUI C Y,LIAO K.Listed companies high transfer and insider stock reduction:“move after planning” or “push boat with the current”?[J].Journal of Financial Research,2016(11):158-173.
[6] 蔡海静,汪祥耀,谭超.高送转、财务业绩与大股东减持规模[J].会计研究,2017(12):45-51.
CAI H J,WANG X Y,TAN C.High delivery,financial performance and reduction scale of major shareholders[J].Accounting Research,2017(12):45-51.
[7] 黄登仕,黄禹舜,周嘉南.控股股东股权质押影响上市公司高送转吗?[J].管理科学学报,2018,21(12):18-36.
HUANG D S,HUANG Y S,ZHOU J N.Does the pledge of controlling shareholder’s equity affect the high transfer of listed companies?[J].Journal of Management Sciences in China,2018,21(12):18-36.
[8] 何平林,辛立柱,潘哲煜,等.上市公司股票送转行为动机研究——基于股权质押融资视角的证据[J].会计研究,2018(3):57-63.
HE P L,XIN L Z,PAN Z Y,et al.Research on motivation of stock transfer behavior of listed companies-based on evidence from the perspective of equity pledge financing[J].Accounting Research,2018(3):57-63.
[9] 夏同水,郑雅君.控股股东股权质押、高送转与股价崩盘风险[J].武汉金融,2020(3):51-59.
XIA T S,ZHENG Y J.Controlling shareholder equity pledge,high delivery and stock price crash risk[J].Wuhan Finance,2020(3):51-59.
[10] 罗康洋,王国强.基于改进的MRMR算法和代价敏感分类的财务预警研究[J].统计与信息论坛,2020,35(3):77-85.
LUO K Y,WANG G Q.The research on financial early warning based on the improved MRMR algorithms and cost sensitive classification[J].Statistics & Information Forum,2020,35(3):77-85.
[11] 罗康洋,王国强.L-SMOTE与SVM结合的不平衡数据集分类研究[J].计算机工程与应用,2019,55(17):55-62.
LUO K Y,WANG G Q.Classification study on the imbalance dataset of L-SMOTE and SVM[J].Computer Engineering and Applications,2019,55(17):55-62.
[12] 刘定祥,乔少杰,张永清,等.不平衡分类的数据采样方法综述[J].重庆理工大学学报(自然科学),2019,33(7):102-112.
LIU D X,QIAO S J,ZHANG Y Q,et al.A review of data sampling methods for unbalanced classification[J].Journal of Chongqing University of Technology(Natural Science),2019,33(7):102-112.
[13] HAN H,WANG W Y,MAO B H.Borderline-SMOTE:a new over-sampling method in imbalanced data sets learning[C]//Proceedings of the 2005 International Conference on Intelligent Computing.Berlin:Springer,2005:878-887.
[14] CHAWLA N V,BOWYER K W,HALL L O,et al.SMOTE:synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16(1):321-357.
[15] HE H,BAI Y,GARCIA E A,et al.ADASYN:adaptive synthetic sampling approach for imbalanced learning[C]//Proceedings of the 2008 IEEE International Joint Conference on Neural Networks.Piscataway:IEEE,2008:1322-1328.
[16] GUSTAVO E A,BATISTA P A,RONALDO C,et al.A study of the behavior of several methods for balancing machine learning training data[J].SIGKDD Explorations,2004,6(1):20-29.
[17] TOMEK I.An experiment with the edited nearest-neighbor rule[J].IEEE Transactions on Systems,Man and Cybernetics,1976,6(6):448-452.
[18] YANG J,OLAFSSON S.Optimization-based feature selection with adaptive instance sampling[J].Computers & Operations Research,2006,33(11):3088-3106.
[19] KIRA K,RENDELL L A.A practical approach to feature selection[J].Machine Learning Proceedings,1992,48(1):249-256.
[20] PENG H,LONG F,DING C.Feature selection based on mutual information criteria of max-dependency,max-relevance,and min-redundancy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1226-1238.
[21] 蔡毅,朱秀芳,孙章丽,等.半监督集成学习综述[J].计算机科学,2017,44(S1):7-13.
CAI Y,ZHU X F,SUN Z L,et al.Overview of semi-supervised integrated learning[J].Computer Science,2017,44(S1):7-13.
[22] 周志华.机器学习[M].北京:清华大学出版社,2016.
ZHOU Z H.Machine learning[M].Beijing:Tsinghua University Press,2016.
[23] BREIMAN L.Random forest[J].Machine Learning,2001,45:5-32.
[24] CHEN T,GUESTRIN C.XGBoost:a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2016:785-794.
[25] FREUND Y,SCHAPIRE R A.A decision-theoretic generalization of on-line learning and an application to boosting[C]//Proceedings of the 2nd European Conference on Computational Learning Theory.Berlin:Springer-Verlag,1995:23-37.
[26] 第八届“泰迪杯”数据挖掘挑战赛赛题[EB/OL].[2020-02-08].https://www.tipdm.org/bdrace/index.html.
[27] 车仲春,赵育新,关爽.上市公司高送转政策的趋势与特征分析[J].会计之友,2013(17):26-31.
CHE Z C,ZHAO Y X,GUAN S.Analysis on the trend and characteristics of high transfer policy of listed companies[J].Friends of Accounting,2013(17):26-31.